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ABSTRACT 

In the past,  contagious distributions have been successfully 
applied  in Bacteriology,  Entomology and Accident Statistics. 
This thesis applies the notion of contagious distributions 
in the  inventory control of new products and seasonal or 
style goods,  which have an underlying "true contagion"  for 
their demands, viz,  the influence of past demands on future 
occurrence of demands. 

A contagious distribution is derived by assuming a modified 
Poificon process where  the demand rate at any instant of time 
depends on the past demands prior  to that instant.    A 
discussion on estimation of  the various parameters of  the 
contagious distribution is also  included.    Using this 
contagious distribution, a multi-period inventory model is 
discussed for new product lines with a "fixed periodic 
review policy."    An optimal    s -  S    order policy is derived 
as a function of the  initial  stock level and the review 
period.     Seasonal or style goods are treated as single- 
period inventory problems with contagious demands.    An 
algorithm is developed  to compute  the optimal order policy 
and  the optimal length of  the period. 
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INTRODUCTION 

In literature,   successful applications of contagious distributions are 

found  in Bacteriology,  Entomology and Accident Statistics,    In this  thesis, 

an attempt has been made to apply the notion of contagious distributions  in 

the inventory control of consumer products which have an underlying "true 

contagion" for their demands,  particularly when the product is new or is a 

seasonal or style good.     "True contagion" means  the probability of a  favor- 

able event depends on the occurrence of previous favorable events.    Thus, 

unlike  the classical Pcisson demand,  the contagious demand in two nonover- 

lapping  time intervals are dependent as occurrence of a demand influences 

further occurrence of  future demands. 

Chapter 1 discusses a "contagious" demand model  for an inventory system. 

Starting with literature review on contagious distributions,  the various 

applications of our contagious demand model are discussed.    It is to be noted 

that  the contagious behavior  is only transient and once the product 

stabilizes in the market,   the contagion effect vanishes.    By assuming a 

modified Polsson process where the demand rate at any instant of time depends 

on the number of past demands,   the contagious demand distribution is derived. 

Since the life of new product lines are longer,  compared to seasonal goods 

like clothings, both commodities are treated separately.     Seasonal goods arc 

considered as single period inventory problems as  the period is small while 

new product lines are considered as multi-period  inventory problems composed 

of a number of single periods.     The contagious demand distributions  for 

succeeding periods for new product lines are also derived. 

Chapter 2 discusses  the case of new product  lines exclusively.     Here,  a 

fixed periodic review policy  is followed after   fixing  the review periods 

institutionally and solving  the multi-period problem by successively  solving 

a single period problem,  knowing the review period.     An    s - S    policy  is 



derived as an optimal order policy   in this case.    An ülgorithm  to compute the 

optimal order  level  for a given  review period is also developed.    The optimal 

ordering policy as a function of  the  length of the review period  is also 

plotted. 

Chapter 3 exclusively discusses  the  seasonal or style goods which are 

considered as single period  inventory problems.    Besides a  fixed period- 

length policy,  an optimal period-length policy is also discussed.     For the 

latter case,  an algorithm to compute  the optimal review period  is developed 

after computing  the optimal order  level  for a given review period.    To the 

author's knowledge,  this is the  first  time an optimization over review period 

is successfully carried out  for an inventory policy under stochastic demand. 

Chapter 4 discusses two methods of statistical estimation of the param- 

eters of the contagious demand distribution. Here it is also shown that the 

maximum likelihood estimator is asymptotically unbiassed and efficient. 

Appendices on solution of ordinary differential equations,  properties of 

Beta and Gamma functions which appear  in our analysis are also  included as 

reference. 
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CHAPTER 1 

A "CONTAGIOUS" DEMAND MODEL 

1.1 Literature Review on Contagious Distributions 

In a recently published volume [10], of considerable interest, coverinj 

the Proceedings of the International Symposium on Classical and Contagious 

Discrete Distributions, we observe the successful applications of the 

notion of contagious distributions, particularly to biological populations, 

accident statistics, contagious diseases, and psychological data.  Actually, 

the interest on contagious distributions dates back to 1920 when Greenwood 

and Yule [6] developed a very general scheme for contagious events where 

the occurrence of each event increases (or decreases) the probability of 

further events. But due to the very generality of their model, their 

formulas become too complex for practical applications. 

J. Neyman [9] developed and applied successfully three types of 

contagious distributions in Entomology for distribution of larvae in 

experimental plots and bacteriology.  In a follow up paper by W. Feller [5], 

it was pointed out that there are two kinds of contagion as "true contagion" 

and "apparent contagion" and Neyman's [9] contagious distributions are of 

the latter type. 

Apparent contagion is the result of inhomogeneity arising from 

distributions on the parameters involved in a population. Thus, the 

compound Poisson distribution is an example of apparent contagion as 

developed by Greenwood and Yule [6] and applied successfully in accident 

proneness. 

In the case of true contagion, the probability of a "favorable" event 

depends on the occurrence of previous favorable events.  Ironically enough, 

assuming true contagion, Eggenberger and Polya [3] arrived at the same 



distribution as obtninod  by Greenwood  and Yule  [6],     The  Greenwood-Yule- 

Polya-Eggcnberger distribution,   which  is a negative binomial distribution, 

has  found many applications  in contagious diseases,   sickness and accident 

statistics.     Gurland  [7J  discusses a  survey oE  the  applications of  the 

negative  binomial and other  contagious distributions with special reference 

to  some medical data. 

1,2    Occurrence of  Contac.ion-Demand   in Practice 

So  far  in  the literature on contagious distributions,  no  attempt has 

been made  to  apply  the notion of  contagious distributions  in  the  inventory 

control  of  consumer products which have an underlying  true contagion for 

their demands,   particularly when the product  is new or  is a  "style" good 

(which changes  its style periodically).     The classical demand distribution 

used  in  inventory control,   like  the Poisson distribution,  will not reflect 

the  true  behavior of  the  contagious  demand.     It  is well  knownthat  the  simple 

Poisson distribution describes mutually independent events;   in other words, 

with a  Poisson distribution the  number of events  in two nonoverlapping time 

intervals are uncorrelated and  the occurrence of an event has no influence 

on the  probability of occurrence of  further events. 

If we study the demand for  the  new products and "style"  goods,  we will 

note that besides the constant demand for the products   (which is mainly due 

to advertisement), a contagious demand also occurs due  to the customers who 

have used  the product and recommended it to their friends or  to other 

sources of consumer awareness.     So until the new product is  stabilized in 

the market,   there is a "contagious" demand during the   initial or "transient" 

stage,   besides  the constant demand.     Unlike Poisson demand,   the contagious 

demand  in two nonoverlapping  time  intervals are dependent as occurrence of a 

demand  influences further occurrence of  future demands.     Given that a demand 
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has occurred for a new product from a particular area, we expect to find 

more demands to come from the same area due to the Influence of the past 

occurred demand.  In other words, our demand model has the underlying 

assumption that past demands have an Influence on the occurrence of future 

demands. 

1.3 Applications of ContaRion-Demand 

A number of examples of products can be thought of, which will follow 

a contagious law for their demand.  For example, acquiring a Princess 

telephone in your home will tempt your neighbor to do the same.  Other 

examples may be, demands for new cereals, new freeze-dried coffee, new books, 

cars (style goods), Christmas trees and practically all consumer products in 

dally use.  The notion of contagion can even be extended to nonconsumer 

products which exhibit a contagion pattern like research reports.  In other 

words, a research organization can do a better control of their inventory of 

reports assuming a contagious demand distribution for their reports.  Also, 

the sequence of published research papers in a particular subject, will tend 

to follow a contagious law. This should be so as readers after seeing a 

research paper tend to work more in the same area which results in more 

papers. This may be useful to a librarian or publisher of a technical 

Journal.  Another classical application is the efficient usage of hospital 

beds for patients with contagious disease. 

1.4 A Contagious Demand Model 

The demand model assumes that every occurrence of demand produces one 

unit of demand implying the demand has a discrete probability distribution. 

It was discussed in Sections(1.2) and (1.3) how the contagious demand arises 

in practice and its various applications.  To incorporate this idea in our 



demand mod<?l, we follow Cox and Miller [1] by assuming a constant demand 

rate and superimposed on that a unit contagious demand rate to reflect the 

influence of each past demand.  So at any point in time "t,"  the total 

contagious demand rate will be equal to the unit contagious demand rate 

times the past demands before "t." So the rate at which demand will occur 

at any time "t," will be the sum of constant demand rate and the total 

contagious demand rate.  Thus, we also introduce, explicitly, time as a 

parameter in our demand model.  Though, the final contagious demand 

distribution, like many other contagious distributions, is negative binomial 

in some sense, a derivation of the distribution will be carried out in the 

analysis to follow, to introduce "time" explicitly since "time" never appears 

as an explicit parameter in classical negative binomial distributions.  (The 

reader is referred to Feller [4] for a discussion on classical negative 

binomial distribution.) 

Some caution must be applied as to the duration and magnitude of 

contagious demand.  One cannot expect the same amount of contagious demand 

throughout the life of a product.  As a matter of fact, the contagious demand 

will be very high when the product has just been introduced in the market and 

will follow a decay law such that its effect vanishes after a time the 

product is stabilized in the market.  So the unit contagion rate, which 

reflects the increase in the constant demand rate, is a decreasing function 

of time. 

1.5 Periodic Review Policy 

There are two types of phenomenal situations that arise in practice. 

One is the consideration of new product lines like new cereals, while the 

other is the consideration of seasonal or style goods like automobiles and 

clothes.  If we assume that the contagion rate varies at each instant of 
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time,  this will complicate our analysis and results considerably.     So,  a 

simplifying approximation is made about  the contagion rate for the  two class 

of goods which exhibit a true contagion for  their demand. 

Most of  the  seasonal or style goods change annually or semi-annually. 

So the length of  time  they remain in market  is much smaller compared  to 

that of new product lines.    Hence,  an approximation is made by using an 

(average)  constant contagion rate throughout  the season.    This may be valid 

if the season is small relative to the variation of  the contagion rate or if 

the contagion rate is changing very slowly. 

In the case of new products which will be in the market for a 

considerable length of  time,  the  contagion rate is approximated as a step 

function with breaks at regular intervals of  time identified as  the  length 

of the review period    T  .    Choice of    T    is made institutionally by observing 

how rapidly the contagion rate is changing.     The inventory  system is 

reviewed periodically and at the end of every review period, a decision is 

made about  the best stock up level  for the succeeding period depending on the 

present inventory level,   i.e., a Periodic Review Policy is employed.     The 

unit contagion rate is not assumed  to be the  same from one period  to another. 

Generally,   the contagion rate will be less  in each succeeding period and the 

successive new value at  the  end of every review period is estimated by  the 

knowledge of the  past realizations of demand.    Under this assumption,   the 

unit contagion rate at time    t  ,  denoted by    a(t)   ,   looks as follows under a 

particular realization. 



a(t) 

T + T Tl + T2 + T3 

FIGURE 1.1 

In the above illustration, the product has three review periods during its 

transient stage, viz, T, , !_ and 1- . At the end of time 

T. + T» + T_ , the product is stabilized in the market and the contagion 

effect vanishes. 

1.6 Assumptions and Notations 

Without loss of generality, the beginning of each period is taken as 

time zero. For the present, we will confine ourselves to seasonal goods or 

to the first review period of new product lines, where at time zero the 

demand is zero. 

This is not true for succeeding periods of new product lines as the demands 
in the previous periods will influence the demand distribution in the 
succeeding periods. Though this does not complicate our analysis too much 
(luckilyl), we postpone its discussion to Section 1.9. 



Let X > 0 denote the initial constant demand rate component. The 

unit contagious demand rate is denoted by a > 0 . In other words, a is 

the Increase in demand rate for each past demand. N(t) denotes the number 

of demands in an interval [0,t] of length t . The probability of n 

demands in [0,t]  is denoted by P (t) . Let T denote the length of the 

review period. 

Denoting by h , the length of a very small interval, we make the 

following assumptions: 

Probabilities of positive demand occurrence in the Interval 

(t,t + h) given r previous demands in (0,t) satisfy: 

(1.1) P{N(t + h) - N(t) - 1/N(t) - r} - (X + ar)h + o(h) where r - 0,1,2, .. 

and o(h) denotes higher order terms In h such that 11m V '  « 0 . 
h-0     h 

(1.2) P{K(t + h) - N(t)  > 2/N(t) - r} - o(h)   . 

(1.3) P{N(t + h) - N(t) - 0/N(t) - r} - 1 -  (X + ar)h + o(h)   . 

1.7    The Contagious Probability Distribution for Demand 

t + h 

FIGURE 1.2 

In the above illustration of the review period [0,T] , consider an 

instant of time t e [O.T] . Assume the Interval  [t,t + h]  of length h 

satisfies the Properties (1.1), (1.2) and (1.3). Hence, we can write the 

following expression for the probability P (t + h) in terms of 
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probabilities at time  t  for n = 0,1,2  

For n = 0 

Po(t + h) - P0(t)[l - Xh + o(h)] 

Taking P (t)  to the left and dividing by h , this reduces to 

P (t + h) - P (t) ,M 
o o   = -xp (t) + 4^ • h ov '   h 

Taking the limit as h tends to 0 , we get 

P'(t) - -XP (t) . 
o       o 

Integrating both sides and using the Initial condition    P  (0) ■ 1   , we get 

Po(t) - e-U 

Similarly, for all n > 1 : 

P (t + h) - Prob [N(t) - n and no demand in  (t,t + h)] 

+■ Prob [N(t) ■ n - 1 and one demand in (t,t + h)] 

+ Prob [N(t) - n - k and k(> 2)  demands in  (t,t + h)] . 

Writing down the corresponding probabilities and using 1.1, 1.2 and 

1.3, we get 

(1.4) 

P (t + h) - P (t)[l - (X + an)h] 
a n 

+ P  1(t)[X + o(n - l)]h + o(h) . 

< i 

Taking P (t)  to the left and dividing by h , (1.4) reduces to 
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p (t + h) - p (t) (h) 
-S S (x + an)Pn(t) + [X + a(n - DlP^Ct) + S^L 

Taking the limit of both sides as h tends to 0 , we get 

(1.5)    P'U) - -(X + an)P (t) + [X + a(n - l)]?n At)   . n n n—i. 

Define: 

P_1(t) - 0      for all t > 0 

(1.6) Po(0) - 1 

P (0) = 0      for all n > 0 
n 

The solution of the above differential Equation (1.5) is 

_ , ,   -(X+na)tr,    ,   1N1 C     (X+na)t   /„si* P (t) » e      [X + a(n - 1)J  I e'    P^ ,(t)dt n J n-j. 

(1.7) 

-(X+na)t + ce 

The general solution holds for all values of n * 1,2, ...  and the 

constant of integration c can be evaluated using the initial conditions 

given in (1.6). It has already been derived that 

P (t) ■ Prob, of no demand in (0,t) 
o 

-Xt 
■ e 

Solving (1.7) for n = 1, we get 

„ , x   X -Xt .   -(X+c-jt 
P.U) - - e   + ce v 

1    a 

As t -*• 0 , P, (t) ->■ 0 which gives c » -X/ot . Hence, we get the 

probability of one demand in (0,t) as 



-at,n 
e  1  • 
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Pl(t) ^ a e~Attl * ^^ ' 

Similarly, by substituting n = 2 and n = 3 , and solving for c using 

(1.6), we get the following probability expressions: 

and 

p (t) . MX^)(X + 2a) e-Xt[1 _ ^at^ _ 

31a 

Extending the results to    n , we get 

p  (o  . X(X + a)   ...   [X + (n - l)a]     -Xt      _ 
n    ' . n i n;a 

Taking the factor a out from each term, we get 

Define — « p  (a constant).  Since X and a are positive, p is 
a 

also positive.  But, p need not necessarily be an integer. Using the 

substitution X/a « p , we can rewrite (1.8) as 

p Ct) . (p + n - l)(p + n - 2) ... (p + 2)(p + Do (e^t)P(1 _ ^a^n < 

n n. 

Using the well-kr     -v gamma notation, we can write 

(1.9) Pn(t)   -  r(p)r(n + i)   ^e       )   (1 - e      )     • 

To simplify the writing, we will henceforth denote       ,  ^°.—■    rr    as 
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('--!).    Note: 

r(n + 1)   •= nr(n)   ; F^) » /iT . 

Thus,   the contagious distribution becomes: 

(1.10) Pn(t)  = (P + ^ ' ^(e^^'Cl - e-at)n        for all    n - 0,1,2.   ... 

Equation  (1.10)  can also be  interpreted in some sense as a negative binomial 

distribution by suppressing time.    Then    P  (t)    will be the probability that 

exactly    n    failures precede  the pth success,   if    p    is an integer where 

prob,   of  success is given by    p ■ e~      > 0    and prob,  of  failure 

. a = 1 _ e"011 > o    for all     t  > 0  , a > 0  .    Hence,    P   (t)    can be rewritten 

as 

(1.11) Pn(t)  " (P + n " ^P0^ for all    n -0,1,2,... 

Note: The Equations (1.10) and (1.11) hold for n = 0 also, as from 

(1.9), 

P 
o 

/ N   r(p + o)  P  P  -xt 
(t) * r(P)r(0 + i) P 

= P * e  • 

Following Feller [4], we can rewrite the binomial coefficients and using the 

fact for any a > 0 

(-•) - (-«f - -l). 
we get 

(1.12) Pn(t) - ("n)p
D(-q)n 
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where 

t) (-1)' 
r(p ->• n) 

r(p)r(n + i) 

Tables of the negative binomial distribution are available in [14]. Also, 

Taylor [13] shows an important mathematical equality in his paper that the 

infinite sum of negative binomial terms can be expressed as a finite sum of 

(positive) binomial terms. Hence, the latter's table can be used to find 

the former. 

Feller [4] has also shown that Equations (1.11) and (1.12) represent 

an honest probability distribution.  Hence, for a fixed "t,"  (1.10) also 

represents an honest probability distribution. 

By definition the generating function of P (t) , denoted by G (Z) , 
00 

will be, Gk(Z) = I    ZnP (t) .  It can be easily verified that 
t      „   n 

n=0 

(1 •13) Gt(z) = (r^z)  where p = e'at • ^"1 - e"at 

1.8 Central Moments of the Contagious Distribution 

Using the moment generating function, the mean or expectation of demand, 

for fixed t , will be, by definition 

m(t) 
A 6Gt(Z) 

(5Z Z-l 

Using (1.13), 
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Hence, 

(1.X4) „(t)  - M . £0^_£Üi . 

Similarly,  taking the  second derivative of  (1.13)  with respect to    Z    and 

taking the limit as    Z ->• 1  , we get 

I    n(n - DP (t) - p(p V)q2 

n=0 p 

By definition, the variance is given by 

Hence, 

OS 

V(t) - I    n2P (t) - [m(t)]2 . 
n=0   n 

(1.15) v(t) 'Si-D{1_-2af
t) 

P    e 

1.9    Demand Distribution in Second and Succeeding Periods 

As pointed out in Section 1.6 in the case of new product lines,   the 

analysis for first period and succeeding periods differ mainly because of 

the  Influence of first period demands on the  second and succeeding periods, 

due to the contagious effect.    Luckily enough,   the analysis is not com- 

plicated too much,  and we get the same form of  the contagious distribution 

as derived for the  first period,  except for a change in parameter depending 

on the number of demands  in the previous periods.    The reader will 

immediately notice that  the analysis for the  second period will follow 

Identically to third and succeeding periods.     The demand distribution for 

the second period is derived assuming the number of demands  in the  first 
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period to be N.  and the new estimated value of the contagious factor be 

a_ .  Once again the beginning of the review period will be denoted as zero. 

Referring to Figure 1.2, probability of a demand in the interval 

(t,t + h)  given r demands in  (0,t) will be 

(1.16) P{N(t + h) - N(t) = 1/N(t) = r} = (X + a2ti1 +  a2r)h + o(h) . 

Since we know ci„ and N  , we know the product a_N..  which is a "constant1 

demand rate and can be added the other constant demand rate X . Let 

A- = X + a-N . 

Hence, fl.16) reduces to 

(1.17)  P{N(t + h) - N(t) = 1/N(t) = r} - (X2 + a2r)h + o(h) 

once again 

(1.18) P{N(t + h) - N(t) > 2/N(t) = r} = o(h) 

and 

(1.19) P{N(t + h) - N(t) = 0/N(t) « r} « 1 - (X2 + a2r)h + o(h) 

Immediately, we notice that the simple substitution X„ = X + N^. , has 

reduced the Equations (1.17), (1.18) and (1.19) identical to (1.1), (1.2) 

and (1.3). Hence, we will get the same differential Equation (1.5) except 

that A will be replaced by A„ , which will lead to identical solution for 
X2 P (t) .  Denoting — = p  , we get 

(1.20)        P 

02 n 
(2) r(p2 + n) /   "0t2t\    / "a2M 
n )(t)  " r(pjr(n+l)   U    2 M1 - e    2  /      for all    n - 0,1.2.   ... 
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Note that we can extend these results to any succeeding period.    For 

example,  let    aN    denote the unit contagion rate for the Nth period.    Then 

N-l 
^M " ^ +   I    N-i01»    W^ere    N,    is the number of demands in the ith period. 

X 
N 

We can define    pm.    similarly as    p„ ■ — , and we will have N ' N      a.. 
n 

"N, 

n   kc;     r(p„)r(n + 1) ve       /   u     e      / P_  '(t) = ^ yjZ ^ IN  \e /    \1 - e       /      for all    n - 0,1,2,   ... 

Thus, we notice that the probability distribution for demands in any 

review period depends on the number of demands that occurred  in previous 

periods.     It is   interesting to note how the central moments vary.     We shall 

confine ourselves to the second period as the results are identical for 

succeeding periods. 

tii-(t)  * mean number of demands in 2nd period 

p2 (i^) 
-a2t 

e 

Since    p»    increases linearly as the number of demands in the first period 

(N..)    increases, we see that   m2(t)  + N..   , and so does,    V2(t)   ,  the variance, 

as 

4 - .'v) 
v,(t) -   ^ -r- -—L . -2a2t 

e 

1.10 Limiting Distribution 

Since it is postulated that the contagion rates ^,,ct0, ...  are strictly 
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decreasing. It will be important to know the limiting form of the contagious 

distribution as the contagious effect vanishes.  It turns out the limiting 

distribution is Polsson. 

Theorem 1.1; 

The limiting distribution of    P   (t)   , given by Equation  (1.10),  tends 

to a Poisson law, as    a -*• 0  . 

Proof: 

To prove  that Polsson  is  the limiting form of    P   (t)   ,  we  follow 

Feller's  [4]   approach,  using   the generating function.     From   (1.13),  the 

generating  function of    P  (t)     is given by 

Gf(Z) 
\l - qz) 

where 

-at 
p = e 

p  +  q  =   1 

p  ■  X/a   . 

As    a-»-0;p->-<D,p-»-l    and    q -»• 0   ;  let    pq •> At     (fixed).     Taking  the 

limit of    G   (Z)    as    a   > 0  ,  we get 

lim Gt(Z)  - lim fl  -  Xt/o ' 
[i -  XZt/p 

p 
=  lim F(p) 

where 

F(p) 
fl -  Xt/o 1° 
[l -   \Zt/pJ     ' 
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Taking logarithms of both sides, we get 

llm loge F(p) - lim [loR  il - U/p)  - log  (1 - XZt/p)! 

Applying L'Hospital's Rule, we get 

lim log F(p) " -Xt + XZt  . 
p->« 

Hence, the limiting value of the generating function asa->-0«e 

which is nothing but the generating function of a Poisson distribution. 

Hence, as 

-Xt/W.n 
a ^ 0 , p (t) . g   Xt) 

n       n. 

Note: 

By our assumption,  in a multi-period model,  the contagion rates are 

strictly decreasing with each period and tends to zero after a finite number 

of periods. 

Hence,    pN    increases with    N    and  tends  to    +00    in a finite period. 

(N) From the proof of Theorem 1.1,   it can be observed that    P      (t)     tends  to a 

Poisson distribution after a finite number of periods. 

1.11    The Inventory System 

In Section 1.5,   it was shown that  an approximation is made about  the 

contagion rate by following a periodic review policy,   i.e.,  reviews of  the 

inventory system at stated intervals of  time and depending on the inventory 

level realized at  the beginning of each interval, the best ordering policy 

is chosen for the  succeeding period.     Thus,  the periodic review policy leads 

to a multi-period inventory problem.     Because of the computational difficulty 
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of not having an explicit expression for the estimates of the contagion 

factor, the problem cannot be treated as a multi-period problem but only as 

successive single period problems. At the beginning of each interval, using 

the past realization of demand, the new value of the contagion factor is 

estimated which gives the contagious demand distribution for that interval. 

So far, nothing has been assumed about the stated intervals of time. 

There are number of ways to determine these intervals of time. One way is 

to fix this review period institutionally either by the knowledge of past 

experience or arbitrarily.  In this case, the review periods may be of 

increasing length in the order of the period, to facilitate looking at the 

system more often during the initial periods, which one might normally do 

since the "learning" about the demand behavior is limited during the initial 

periods.  This type is a fixed periodic review policy.  Chapter 2 essentially 

discusses an optimal order level for a fixed periodic review policy for a 

single period problem. 

Again, it was shown in Section 1.5 that for the case of seasonal or 

style goods, we only have a single period to consider.  To determine this 

length of the review period T , one may follow the fixed period-length 

policy by choosing T by past experience or arbitrarily. Another way would 

be to seek the "best" review period to choose.  This ieads to an 

optimization problem with two variables, namely, an order level and a review 

period.  This type is an optical period-length policy, which can be solved 

as a "two-stage optimization" problem.  The optimization proceeds by first 

finding the optimal order policy as a function of the length of the review 

period and then selecting an optimal review period.  By considering the 

optimization in two stages, an optimal solution for a fixed period-length 

Chapter A discusses the estimation procedures for the parameters of the 
contagious distribution. 
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policy Is also given.    This Is discussed  in Chapter 3.    This  is the first 

time,  to the author's knowledge, an attempt has been made successfully to 

find an optimal review period for an inventory policy under stochastic 

demand.     For a deterministic demand,  we have the classical  result  in the 

Wilson-Harris    lot  size formula. 

Two situations arise in an inventory  system from demands which occur 

when the inventory  is zero: 

(i)       The demand is backordercd and  supplied at  the  start of  the next 

period,   i.e., backorders are filled. 

(ii)     The demand is not filled,   i.e.,   it is lost. 

Both the above mentioned situations can arise for seasonal goods as 

well as new product lines 

1.12    Costs  Associated with  the  Inventory  System 

Three   types  of  costs are considered:     (i)  procurement  costs, 

(ii)   inventory holding cost,  and   (iii)   stock-out costs. 

One may observe  in inventory  literature  that  the  cost   function is 

assumed convex without specifically giving  the expression for  it.     Instead, 

in this  thesis,  each of the costs are purposely discussed and an acceptable 

parametric  form is  given.     In practice,   this facilitates computing  these 

costs more  easily  as one has  to only compute the various parameters.    Also, 

this gives  an opportunity  to make a  parametric study of  the optimal solution 

and  see how  sensitive  is  the optimal  solution with respect  to  the various 

cost parameters. 

+ 
A detailed  discussion of Wilson-Harris  lot  size  fornula  can be  found  in 

Hadley   [8] . 
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1.13 Procuremunt  Costs 

We shall begin by examining the procurements costs, which can be 

divided into two parts.  First, there is the cost of the goods itself which 

is paid to source of production. Then there is the costs incurred by the 

Inventory system itself in making a procurement.  These may include costs 

associated with ordering, bookkeeping, transporting, inspection, testing and 

so on.  These themselves fall into two classes, one which depends on the 

amount ordered and the other independent of the amount ordered.  Including 

the cost of the goods itself in the first classification, we can denote the 

procurement costs as the sum of two costs; one, which depends on the amount 

ordered, denoted by c/unit ordered, and, the other, independent of the amount 

ordered, denoted by  k , called the set-up cost. Hence, the total cost of 

placing an order for Q units will then be k + cQ . 

1.14 Inventory Holding  Costs 

The next  important  cost  to consider   is   the   inventory holding  cost. 

Included in these are  the  real out of pocket costs such as cost of  insurance, 

taxes,  breakage and pilferage at storage  site,  warehouse rental and costs of 

operating  the warehouse.     But,  the most  important  cost  is not  the direct  out 

of pocket cost but an "opportunity cost" which  is  the cost incurred by 

having the capital  tied  up  in inventory rather   than having  it  invested  else- 

where,  and it  is  equal  to   the largest  rate of  return which the  system could 

obtain from alternate investments.     So,  we shall assume that  the 

instantaneous rate at which  inventory carrying charges are incurred are 

proportional   to  the   investment  in  inventory  at   that point  in  time.     Let,     I   , 

denote the holding cost   in $/unit  time/$   invested  in inventory.    According 

to Hadley  [8] ,   the  reasonable real world  values   for    I    range  from  something 

like 0.15  to  0.35. 
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1.15 Stock-Out Cost 

Back-order costs are difficult to measure since they can include such 

factors as loss of customers' goodwill (i.e., in the future, he may take his 

business elsewhere). Two types of back order cost for our inventory system 

are considered: 

(i)  A back order or shortage cost depending only on the amount 

backordered. Denote this by p/unit backordered. This may include 

the cost of notifying the customer, bookkeeping of the amount of 

back orders and so on. 

(li) A variable cost depending on the length of time for which an 

order remains unfilled, e.g., a machine shop where lack of parts 

keeps the machine idle.  Denote this by p/unit short/unit time in 

back order. 

1.16 Selection of an Operating Order Policy 

The purpose of this chapter is to find an "optimal" ordering policy with 

the help of a mathematical model of the inventory system.  So far, the term 

"optimal" has been used loosely.  By an "optimal" policy we mean, the 

ordering policy that maximizes the net profit or minimizes the total costs. 

In some situations, like the ones we are interested, viz, production of 

consumer products, one would like to maximize one's net profit. In some 

other situations, where the profits are always negative (e.g., post office), 

one may like to minimize the cost.  In some cases, both these considerations 

may arrive at the same ordering policy. One should remember that the net 

profit or total costs need not be equivalent to a strict accounting profit 

or cost, since for purposes of computing optirr.al ordering policy it is only 

necessary to include those costs which vary with the operating policy. Costs 

which are independent of the operating doctrine, like the cost ot operating 
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the Information processing system  (which includes the cost of making an 

actual inventory count, use of computer or  the cost of making demand 

predictions),  need not be included.     There  is another reason why  the  profit 

or cost will  differ  from what would  be computed from accounting  records. 

This  is because   the  stock-out  costs  include  components which are not  out of 

pocket  costs,   like  the opportunity costs. 
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CHAPTER 2 

SINGLE PERIOD OPTIMAL ORDER POLICY 

2.1 Feed Back Control Policy 

It was shown in Chapter  1 that the multi-period inventory problem for 

the case of new product lines is solved by considering it as successive 

single period problems.    Thus,  this chapter will be devoted exclusively for 

finding an optimal order level for a single period problem under a fixed 

periodic review policy where the demand for the new products follow a conta- 

gious  law.     Because of  the  fixed periodic review policy,  the review periods 

are chosen by the knowledge of past experience or arbitrarily. 

As discussed earlier,   the inventory model calls  for new estimated 

values of the parameters of  the demand distribution after every review period. 

Hence,  it is assumed that  the values of the constant demand rate    (X)   ,   the 

unit  contagion rate     (a)   ,   the number of demands in the previous periods 

(^ N.)    and finally,  the rtview period    (T)    are known.    This will completely 

specify the contagious distribution, given by Equation (1.10). 

Since a single period problem is being solved at the end of any review 

period,  the past experience of the demands  in the previous periods is used 

for  the succeeding periods.     Thus, an efficient feed-back control policy may 

be determined as information is constantly fed back into the inventory 

system and this feed back is used in determining the  ordering policy 

successively.    There is also a "learning process" associated with the 

operation of the inventory system. 

2.2 Notations 

We shall review all our notations and symbols used so far and introduce 

a few more in this  section. 



?(, 

x -  initial   inventory level before  reordering goods. 

y -•  starling  inventory  leve]  after  reordering.     (Hence,     (y - x)     is the 

amount  ordered.) 

T - review period. 

N - amount demanded during  the review period    [0,T]   . 

Note that     N    is an integer valued  random variable having a contagious 

probability distribution 

i(T)  =  (p + n-l)-p-n p (T)  = y /pV for all    n = 0,1,2,  ... 

where 

. /p + n -  l\ r(p + n) 
W \ n        I      r(p)r(n+ 1) 

(11)       p=e tp>0,q>0    and    p + q = 1  .     a    is   the unit  contagion 

rate  for  the  current  period  under consideration.     (a  >  0) 

(iii)     P   (T)     is the probability of    n    demands  in     [0,T]   . 

(iv)       p  = A'/a    and    A'  = X + N'a   .     Where    X     is the constant demanii  rate 

for  the  current period and    N'     is the total number  of demands  in 

the previous periods.    Note  for  the first period    X'   E  X     since 

N'   H  0  . 

m(T)  - mean number of demands  in  the  current period.     Note    m(T)   = oq/p   . 

k -  set up cost,     (k > 0) 

c - cost/unit purchased.     (c  >  0) 

I -  inventory holding cost per unit time per $  invested  in inventory. 

h =  Ic  -  inventory holding cost  per  unit  tine per unit held  in  inventory. 

(h >  0) 

p - shortage cost/unit short.     (p > 0) 

p - shortage cost/unit  short/unit  time,     (p > 0) 
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r - gross revenue/unit sold,     (r > 0) 

2.3 Assumptions 

A-I; 

No disposal of goods Is allowed at the end of the period.  In other 

words, at the end of every period we either order for more to increase the 

inventory level  (=*• y > x) or order nothing and stay at the same initial 

inventory level xC*" y = x) . Hence, y > x always. 

A-II; 

The expected net revenue from unfilled orders are not included in the 

current period.  Since the back orders are supplied only at the beginning 

of next period, the revenue from filling the back orders is included in the 

next period for convenience. This assumption is not correct if the current 

period is the last period since there is no succeeding period.  This will be 

discussed In a later chapter.  (Refer to Section 3.8.) 

By Assumption A-I, we have to consider only two cases: 

Case (1)  x-0,y>0,y>x 

Case (ii)  x<0,y<0,y>x. 

The relevant costs in these two cases are discussed using Figures 2.1 

and 2.2 for Case (i) and Case (ii) respectively. 

2.4 Expected Gross Revenue Function 

By Assumption A-II, the expected revenue corresponds to goods sold in 

the current period only. 
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Case (1); 

Referring to Figure 2,1, there is no revenue from filling last period's 

back order if x is nonnegative, while the revenue Is -rx if x is 

negative. Hence, the revenue from filling back orders is written as 

-r min (x,0) where x represents the algebraic value of the initial 

Inventory level Ix ■= 01 . Similarly, the revenue from demands in the 

current period (Figure 2.1) is r times the number of demands for realiza- 

tions (a) and (b) and is ry for (c). Hence, in general, the revenue from 

y OB 

current demand is    r    ]]    nP  (T) + r      ^      y? (T)   .    Thus,  the total expected 
n»0 n^y+l 

y 00 

gross revenue is    -r min (x,0) + r    |    nP  (T) + r      I     yPn(T)   .    By 
n^O n-y+l 

changing the summation,  this expression becomes    -r mln (x,0) + rm(T) 
00 

- r     I      (n - y)Pn(T)  . 
n«y+l 

Case (11); 

Referring to Figure 2.2 and Assumption A-II, the gross revenue is 

r(y - x) .  (Note: x < 0 and y < 0 .) 

2.5 Procurement Cost Function 

As stated in Section 1.13, this Includes a set-up cost and the cost of 

purchasing the goods. This cost is the same for both Cases (1) and (11). 

Since the set-up cost is positive only if an order is made, a delta function 

is introduced to take care of the case when no order is made (i.e., 

y ■ x) . Hence, the set-up cost ■ k<5(y - x) where 

6(y - x) » 1 if y > x 

■ 0 otherwise. 
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The cost of goods purchased is c(y - x) . Hence, the procurement cost is 

k6(y - x) + c(y - x) . 

2.6 Expected Inventory Holding Cost 

Case (i): 

An inventory holding cost is incurred as long as there is a positive 

inventory level and there is an Instantaneous holding cost with respect to 

the inventory level at that instant.  Considering an instant  "t" c   [0,T] , 

the inventory holding cost in the interval  [t,t + dt]  will be 

)  (y - n)P (t)dt , and integrating over the entire interval  [G,T.' , the 
n=0       n 

expected inventory holding cost for the entire period is 

hi     (y - n) f  Pn(t)dt . 
n=0       < 

Now, the integral j    P (t)dt 
0  n 

f      r(c + n)   (-*t)
0
(^ 

J   r(p)r(n + i) ^e  ; u e  ) dt 

By change of variables, with the substitution u = 1 - e 
•at 

where 

J      nU'-C   J     r(p)r(n + 1) U  u;  U  a 

q * 1 - e 
-aT 
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The integrand Is an Incomplete Beta Function Ratio (properties of incomplete 

Beta functions are given in Appendix II).  By definition, a Beta function 

with parameters  (m,n)  is given by 

D/  \   C   "-l^i   \n-1j   r(m)r(n) BO-.n) - y u  (1 - u)  du = 7^—) ' 

and  the  incomplete Beta function with parameters    x  , m    and    n    is given by 

Bx(m,n)  ■=    f um_1(l - u)n"1du for    x <  1 

Define 

I   (m,n)   <  1 for    x  <  1 
Bx(m,n) 

B(m,n) ■'"x 

where    I  (m,n)    denotes  the  incomplete Beta function ratio.       Hence, 

T I_(n + l,p) 

(2.i) /" p (t)dt - --a-—  J      n ap + n 
0 

l_(n + l.p) 

and the expected inventory holding cost is    —   ^     (y - n) —^—  . 
n=0 

Case  (ii); 

It is immediate that the inventory holding cost in this case (Figure 2.2) 

is zero, as there is only a negative inventory level throughout the period. 

Pearson [11] has tabulated the values of incomplete Beta functions for 
various parameters. 



32 

2.7  Expected Shortage Costs 

As stated earlier, there are two kinds of shortage costs, one which 

depends on the amount of shortage and the other depending on the 

instantaneous shortage level.  Again, Cases (i) and (ii) are discussed 

separately. 

Case (i):  (Figure 2.1) 

The expected shortage cost associated with parameter "p" is nothing 

but the expected shortage level at the end of the period times the cost 

per unit short  (p) .  By computing the instantaneous shortage cost in a 

fashion similar to that for holding cost, the total expected shortage cost 

is 

1 (n + l,p) 

P  I  (n - y)Pn(T) + J I      (n - y) 2.      Y  /„ . ,A SL. 

n*y+l n=yfl 

Case (ii): 

Referring to Figure (2.2), the total expected shortage cost is 

T 

-py + pm(T) - p>T + P / m(t)dt 

which reduces to 

(p + p/a)m(T) - ppT - (p + pT)y , 

using the fact 

f^\      0(1 - e  )   t -at      ., 
m(t) - —^—— L '  p[e   - 1] 

e 
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2.8 Expected Net Revenue Function 

The expected net revenue function for a given review period T with 

parameter y is denoted by Tt(y,T) .  The expressions for irCy.T) for 

Cases (i) and (ii) given separately are: 

Case   (i); 

(2.2) 

y>0,x = 0,y>x 

Tr(y,T)  - rm(T)  - r min  (x,0)  + ex - k6(y - x) 

- Uy 
I_(n + l,p) 

+ - I (y - n) -3—  « L ' p + n n=0 

+ (p + r)  I      (n - y)P (T) 
n=y+l 

I (n + l.p) 
CD mm 

+ p/a I      (n - y) -^^  
n»y+l 

P (T) and I  can be computed from the tables available in [14] and [11] 
n        — 

q 
respectively. 

Case  (il); 

y<0,x<0   ,y>x 

(2.3)      iT(y,T)  - -rx + ex - k6(y - x) 

-  [m(T)(p + p/a) - ppT -   (p + pT + r - c)y]   . 

It can be easily verified that  the  folloving general expression for 

both Cases  (i)  and   (ii)  holds.     In general,     ;r all    y»0,x*0,y>x 

(2.4) 
TT(y,T) - rm(T)  - r min  (x,0) + ex 

-  [k5(y - x)  + G(y.T)] 
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where 

G(y,T)  = cy +  (p + r)    I     [n - min  (y,n)]P  (T) 
n=0 n 

I_(n +  l.p) 

(2.5) +^    I     [max   (y.n)  - n]     q     .   n  
a  n=0 P  T  n 

I   (n +  1,D) 
00 •• 

+ p/a     \     [n - min   (y,n)]     q   . 
n=0 p 

2.9    Properties  of  the  Cost  Function 

The optimal order  level    y  ,   that maximizes  the net profit    ^(y,!)   , 

is obtained  by minimizing  the total  cost  function    k.6(y - x)  + G(y,T) 

where    k5(y - x)     is a  step  function as  shown below in Figure  2.3. 

k5(y ■ 
i 

k 

- x) 

i 

FIGURE 2.3 

Hence, the main interest is to examine the properties of the function 

G(y,T) for all values of y . 

Proposition 2.1; 

The cost function G(y,T)  is strictly pointwise convex in 

y e {0,1,2, .... ^} , for given T > 0 . 
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Substituting y > 0 in (2.5), 
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(2.6) 

G(y,T) = cy + (p + r)  £  (n - y)P (T) 
n=y+l 

I (n + l.p) 

«^-'-^ 

+ p/a   I   (*~ y) -Vr^ 
n=y+l 

1 (n + l,p) 

P 

To show that G(y,T)  is strictly pointwise convex in y , it is 

sufficient to show that its second difference (as y takes integer values 

only) is positive. The first difference of G(y,T) is 

AG(y,T) = G(y + l.T) - G(y,T) 

(2.7) 
(p + r - c) + (p + r) I    Pn(T) 

n=0 n 

I (n + l.p)       ^  I (n + l,p) 

a n.0  p + n        n-y+l  D + n 

The  second difference of    G(y,T)     is 

A2G(y,T)  - aG(y + l.T)  -  AG(y,T) -  (p + r)Py+1(T) 

.  I  (y + 2,p) 

+ \     a    /   o + y + 1     ' 

We have    P ^ (T)   > 0    and    I  (y + 2,p)  > 0    for all    y  z   (0,1,2 «} 

and    T > 0 .    Hence    a2G(y,T)   >  0  ,  implying that    C(y,T)     is strictly 

pointwise convex in    y e  (0,1,2,   ...,"-)   ,   for given    T  >  C  . 
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Proposition 2.2; 

The values of the cost function G(y,T)|     and G(y,T)]     (which 
y=0~ y=0 

represents the values of G(0,T)  reached from left and right of the origin 

respectively) are equal. 

Proof; 

Putting y < 0  in (2.5), 

(2.8) G(y,T) = (p + r + p/ct)m(T) - ppT - (p + pT + r - c)y . 

Hence, G(y,T)  is linear for all y < 0 with a negative slopo since 

r > c .  Its value at the origin is 

(2.9)       G(y,T)|  _ - (p + r + p/a)m(T) - ppT 
7=0" 

From (2.6), 

(2.10)       G(y,T)I  + - (p + r + p/a)m(T) - paT . 
y=0 

By (2.9) and (2.10), the values of G(y,T)  at the origin fror, the left and 

from the right are the same. 

Propositiun 2.3: 

G(y,T)  is polntwise convex in y , for given T > 0 • 

Proof: 

From (2.8),  G(y,T)  is linear for all y  < 0    ind hence pointwise 

convex in y i 0 .  From Proposition 2.1,  G(y,T)  is strictly pointwise 

convex for all  y e {0,1,2, ..., «} .  Hence, the only remaining thing to be 

shown is 



^G(y,T)l    > AG(y,T) 
y=0 y=0 

From (2.8), 

AG(y,T)|  _ = -(p + pT + r - c) . 
y=0~ 

From (2.7), putting y = 0 , we get 

AG(y,T)|   . = -(p +r - c) + (p + r)Po(T) 
y-0 

I (l,p)      ^ I (n + l,p) 

I_(n + l,p) 

using (2.1) that | Pn(t)dt - ^ "^T^  ' We haVe 

fiG(y.T)|  +- -(p + r - c) + (p+ r)Po(T) 
y=0 

T      - r 
+ h / Po(t)dt " P / ll ' Po(t)ldt 

0 0 

(2.11) - -(p + pT + r - c) + (p + r)P (T) 

X 

+ (h + p) / P (t)dt > AG(y,T) 
*'   J       o y-0 
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Hence, G(y,T) is pointwise convex throughout in y for all T > 0 . 

2.10 Critical Order Level 

Let y (T) denote the critical order level for given T minimizing 

the cost function G(y,T) .  Since G(y,T)  is linear with negative slope 

for y < 0 , it is immediate that the global minimus of G(y,T) cannot occur 

for y < 0 . Since G(y,T)  is strictly pointwise convex for y in non- 
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negative  real  line,     y   (T)     is unique.     If   the slope  (first difference)  of o 

G(y,T)     at     y  =  0       is positive,   then the minimum of    G(y,T)     occurs at 

y =  0  .     If,  on  the other hand,     AG(y,T)     at    y = 0       is nonpositive,   then 

y  (T)   >  0   .     Heuce,   it   is necessary  to consider the  sign of     AG(y,T)    at 

y » 0    .     Let 

a(T)   -   AG(y,T)! 
y=o 

From   (2.11) 

T 

a(T)  - -(p -t- r + pT - c) +  (p + r)Po(T) +  (h + p)   J   P0(t)dt   , 

0 

and since  P (t) - e"  , it follows that 

(2.12) a(T) - -(p + r + pT - C) + —"^ + (p + r " ■!}~rE)Po(T) " 

Thus,   if     a(T)   >  0    for given    T   ,   then    y   (T)   H 0  .     Otherwise,     y   (T)   > 0 

for    a(T)   <   0  .     A3  the  review period    T   tends  to zero,     a(T)     tends  to a 

positive  value    c   .     Also,     a(T)     tends asymptotically to 

-(p + r - c)  +  r—^ -  pi    for    T -♦ *  ,  which is negative and  remains so 
A 

for  sufficiently  large values of     T   . 

Proposition  2.4: 

There exists a unique and  finite    T    >  0    such  that     a(T  )   =0    ^'id 
o o 

a(T)   * 0    for    T *  T    . < >    o 

Proof; 

From   (2.12), 
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■[H^-'H .•(«.^»I^^-CP + DIXP^T). ,, 

and 

a" (T) =-[]Lp- (p + r)]x2Po(T) 

Consider the two cases where 

(a) ^ < (P + r) 

(b) - '■i -• (p + r) 

Case (a); 

Since —r-2- < (p + r) , a'(T)  is strictly negative and a(T)  is a 

convex decreasing function in T . Hence, there exists a unique T  such 

that 

a(T) - 0 for T - T 
< > o 

Case (b): 

Since —r—^ > (p + r) , a"(T)  is negative. Hence, a(T)  is strictly 
A 

concave. Thus, a'(T) decreases as T increases and becomes negative 

after some T and stays negative thereafter.  Hence, ••.here exists a unique 

and finite T  where a(T ) « 0 and a(T) * 0 for T  T . 
O O < >  0 

From ProposLtion 2.4, it follows immediately that 

y (T) = 0 for all 0 < T < T 
o =o 

(2.13) 
> 0 for all T > T . 
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For     T  >  T     ,   the critical  order  lovel   (integer)     y   (T)     is  sought  such  that 

AG(y   (T)  -  l.T)  <  0 
(2.14) 

AG(yo(T).T)   >  0  . 

A plot  of  the  function    G(y,T)     with respect  to    y   ,   for a given    T  ,   is 

shown  in Figure  2.4. 

2.11     Optimal Order Level 

Given an initial  order  level     x  ,   if  the  order  level  is    y   (T)   , 

(assuming    y   (T)   > x) t   then  the  total cost  of ordering and  operating at 

level    y   (T)     is    k + G(y   (T),T)   .     Instead,   if  the  order  level remains at 

x  ,   the  cost  is    G(x,T)   .     Hence,   the optimal  policy would be  to order  up   to 

y   (T)     if and only if,     G(x,T)   >  k + G(y   (T),T)   .     Otherwise,  no additional 

stock  is ordered.     Compute  a  level     £(T)   < y  (T)   ,   such that 

(2.15) G(s(T),T)   =  k + G(yo(T),T) 

Note that s(T) may be positive or negative for given T . 

Hence, the optimal order level, denoted by y (T) , will be 

(2.16) y*(T) 

if x > s(T) 

yo(T)  if x < s(T) . 

Denoting y (T)  by S , such an order policy is known as an (s - S)  policy, 

since the order level is  S  if the inventory level is below s ; otherwise, 

it is optimal to remain at the level x . 

2.12  Algorithm to Find the Optimal Order Policy 

For a given review period T , the optimal order level is found from 
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y (T)  by using (2.15) and (2.16).  Hence, the main interest is to have an 

algorithm to find y (T) , for those periods T which are greater than or 

equal to T  , since y (T)  is zero for all values of  T which are less 

than T .  From (2.14), an integer  y (T)  is sought such that 

AG(yo(T) - l.T) < 0 

AG(yo(T),T) > 0 . 

Assume   there  are  tv <  nonnegative  levels    y1     and    y^Cy?  >  y-i)     such  that 

AG(y1,T)   < 0    and    AG(y2,T)   > 0  . 

Note  that     y_     is the critical  order  level  for given    T   ,   if    y9 = y1  + 1  , 

At  the  start  of  the  algorithm  the  interval     [y1 ,y  ]     will  be much larger  than 

unity.     The  aim is to reduce  the  interval length such  that  ultimately 

[y? -  y. I     equals unity.     For   this  purpose,   the well-known bisection 

procedure may be used.     Later  a  procedure for  finding   the   initial values of 

y1     and    y       will oe given. 

Bisection Procedure; 

(1) Compute  the median,     y     = 
yl + y2 

rm 2 

(ii)       Calculate    AG(y   ,T)     using   (2.7). 
m 

(ill)  If  AG(y ,T) > 0 , then set y- = y .  Otherwise, set y, = y  . 
m ^   m im 

Now we have a new and shorter interval  [y, ,y ] . 

(iv)   If the length of the interval  (y„ - yT)  is unity, then set 

y2 = y (T) .  Otherwise, go back, to Step (i). 

Computation of the Initial Values of  y  and y„ : 

Since  T > T  , we know from Theorem 2.4, that  AG(y,T)I  + < 0 
y=0 
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Hence,  we set    y    = 0   .     Referring  to  Equation   (2.7),  it  is possible  to 

find an    M  ,  with  the  help of  the  incomplete Beta function tables   [11],   such 

that    I   (M + 1,D)  ->■ 0   .     In which case,     AG(M,T)   > 0    as required.     For 
q 

example,   for    p  =  2,I-^0    as    M^8;Io->0    as    M-*50.     Hence,  we 
. J . o 

set y = M • 

2.13 Properties of the Critical Order Level 

It will be of interest and use (refer to Chapter 3) if we know the 

properties of y (T)  as the review period varies in the nonnegative real 

line.  The following properties of y (T)  with respect to T will be proved 

with the help of a few propositions: 

(i) y (T) is nondecreasing in T e [0,°°) . 

(ii) y (r) is a step function of T e [0,^) 

(iii) y (T)  is bounded above as T -* *> . 

Define a function F..(T)  such that 
S 

FN(T) - (P + D l pnm + * I   \,n 
n=0 n=0 

(2.17) 
^  I_(n + 1,D) 

- p/a  I     -3—r  for all  N = 0,1,2, 
n=N+l 

Note that F^^T)  equals &G(N,T) + (p + r - c) . From (2.14),  N  is the 

critical order level if and only if 

(2.18) 

F
N_1

(T) < ^P + r " c) 

FN(T) > (p + r - c) . 

Hence,   for a given    T   ,  an integer    N     is  sought  such  that    F  (T)     is  above 
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the "(p + r - c)  line " and F .(T)  is just below the "(p + r - c) 

line." 

Proposition 2.5: 

F^.-CT)  is greater than FXT(T)  for all T > 0 and for all 
N+l K 

N =  0,1,2  

Proof 

It  is sufficient  to  show  that  the  first  difference of    F.,(T)     is 

positive.    Calculate 

AFN(T)   =  FN+1(T)   -  FN(T) 

.     I   (N +  2,p) 

> 0     for all    T >  0   . 

Proposition 2.5  shows  that    y  (T)     is unique  for  every    T    and   it   is a 

step   function of    T   .     The  next thing  to  show  is  the  existence of  finite 

upper  bound to    y   (T)   .     For   this,  the derivative  of     F  (T)     is needed  which 

involves  the derivatives of     P   (T)    and     I   (n +  l,p)   .    Now,   from  (1.10), 
n - 

q 

P;(T) = £ 
(2.19) 

[Pn(T)]   -ijj^-^Ce-Va-e-V 

=   (C  + n  -   l)paP     .(T)   -  AP   (T) 
n-i n 

for all    n = 0,1,2, 

Note: 

P_1(T)  =  0  ,   p  =  e i^i and     p  + q  = 1 

In a graph of     F..(T)     against    T  ,  "(p + r  -  c)     line"  is  the  line drawn 

parallel  to T-axis   (abscissa)   at a height of     (p + r  - c)   . 
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From (2.1), 
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" I (n + l,p)' 

J_ iJ  = p 
dT |_a  p + n   J   n 

(T) . 

Hence, we can write 

F'(I) - fVÜ 
W       dT 

N 
(2.20) (p + r) I    [(p + n - DiaP  (T) 

n=0 
XPn(T)] 

»  N 
+ (h + P) I Pn(T) - P 

n=0 
for all N > 1 

To treat the case N = 0 separately, it has been omitted in (2.20). From 

(2.17), putting  N = 0 and simplifying, 

(2.21)   FJT) = -pT + (p + r)P^(T) + ^-^ [I - ?JT)] 

(2.22)       F'CT) = -p - [X(p + r) - (h + p)]Pn(T) . 
o o 

Limiting Values 

Next is to examine the limiting values of F (T) and F'(T)  for all 

N = 0,1,2, ...  as T •+ 0 and T -* <*  . 

(1)  T ^ 0 

FN(T) - (p + r) for all N = 0,1,2, 

(2.23) F'(T) - -[Up + r) - h] 
o 

FJ(T) - h for N > 1 . 
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(li)    As    T -> ^   : 

FN(T)  -♦ -oo for all finite    N = 0,1,2,   .. 

and for    p > 0 

FJJJCT) -> -p for all finite    N = 0,1,2,   .. 

The following  proposition characterizes  the  behavior of    FMW     
an^ 

F'(T)     for   Infinitely  large    N  . 

Proposition  2.6; 

The critical   order  level  is bounded above  as  the  review period     T ->• ^ 

Proof: 

From  (2.20),   as    N     tends  to    »  , 

F'(T)  -  (p + r)     I     [(p  + n - l)iaP    . (T)   -  \V(T)] +  (h + p)  -  p 
N n=0 n-1 n 

(p + r^afp +£f-1- Up + r) + h = h for all    T > 0 

Hence,  for  infinitely large    N  ,  F.,(T)     is  linear with positive  slope,   and 

from (2.23)    F  (T)   >   (p + r - c)     for all values of    T >  0    and  for    N 

greater  than some  bounded  integer.     Hence,   condition  (2.18)  cannot  be 

satisfied  by an  infinitely large    N    which  implies  that    y   (T)     is   finite 

for all values of    T . 

To show the most  important and difficult  property that    y  (?)     is a 

nondecreasing  function of    T ,  it has to be proved that    F  (T)     crosses the 

"(p + r - c)     line" at most once for all finite    N  .    Through the following 

proposition,  a much stronger result  is proved. 
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Proposition 2,7; 

FA'(T) can have at most one change in sign in the range T e [0,00) 

for all finite N = 0,1,2, .... 

Proof; 

Consider first    N >  1  .     Rewrite  (2.20)  as 

N 
F'(T) =  (p + r)     I    [(p + n - l)iaP       (T) ] 

a n=l n~x 

N 
-  [X(p + r)  -   (h + p)]    I    P  (T)  - p for all    N > 1  . 

n=0    n 

- -aT 
Introducing a new variable    u = q = 1 - e        , write    F'(T)    as a function 

of    "u"    alone.    Note as    T    varies  in the range     [0,°°)   ,  u    varies  in the 

half open interval    [0,1)     and the  transformations from    u    to    T    and vice 

versa  are one to one.     Hence,    P   (T)    reduces to n 

T,  / v /i \P  n      L r(o + n) P  (u) = c  (1 - u)   u      where    c    ■  —.  >_,— '   r n n n      r(p)r(n + 1) 

and    F'(T)     is transformed  to 
N 

p+1 n-1 
rj(u)  - !a(p + r)     I     (p + n - l)cn-1(l - u)0+1u 

(                   n=l 

N o   n)         ' 
- [X(p + r)  -   (h + p)]     I    c   (1 - u)pun    - p 

n-0    n' ) 

Taking  the  term    (1 - u)       outside  the curly brackets and noting that 

(p + n - l)c    .  « nc     , n-i n 
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( N-l N-l 
F^(u)  =   (1  -  u)P  a(p + r)p     I    c^1 +  oi(? + r)    I    nc u" 

( n=0 n=0      n 

N «        N )      . 
- a(p + r)     I nc u    -   [X (p + r)  -   (h + p)]    I    c un    - p 

n=0      n n=0    n     ) 

cancelling  the  like  terms,   this  simplifies  to 

(2 
F'(u)   =   (1  - u)P   (h + i)     I    c  u" -   (X + aN)(p + r)cMuN    - p 

.24)       N ( n=0    n N     ) 

for all    N >  1  . 

For a check note that 

F^(0) = h and F^(l) = -p 

Since 

(2.25)       F''(T) = Fl'Cu) 4^ = F''(u)ct(l - u) , 
■N N v ' dT   N 

a > 0 and  (1 - u) > 0 for all u e [0,1) , the sign of F''(T)  is the 

same as that of F''(u) • ?rom  (2.24), 

F'/di)  -  (1 - u)1 

- 0(1 - u) 

.      N n-l (h + p)    I    nc u        -   (X + aN)(p + r)N 

P-l 

n=l 

.       N 
(h + p)     I    c un -   (X + aN)(p + r) 

n«0 

,      N-l] 

:NuN I ' 

.P-l Taking     (1 - u) as a common factor, 
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F^'(u) (1 - -it n-1 
(h + p)    I    (p + n - l)cn_1un"X(l - u) 

n-l 

-    p(h + p)     I    c^u11 

(X + aN)(p + r) 

N 

Ncyj^d - u) 

n=0 

(1 - lO^Uh + p) 

p(X + aN)(p + r)c ■"•] 
N-1 N 

I    (p + n)c un -    I     (p + n - 1) 
Ln=0 n=l 

- (X + oN)(p + r)^^"1 + (X + aN)(p + r)NcliTu
N 

.       N ) 
- p(h + p)     I    cnun + p(X + aN)(p + r)cNu   j 

n=0 ) 
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-1 :    iu „-i j 

n-1 n 
using the fact that     (p + n - l)cn_1   = ncn    and after cancellation of like 

terms, 

- u)p-1!-(h + Fj'Cu)  »  (1 - u)^   "{-(h + p)NcNuN -   (X + aN)(p + r)^^"1 

+ (X + aN)(p + r)NcXTu
N - p (h + p)cMuN + p(X + aN) (p + r)cMuN 

N N '      N 

Hence, 

(2.26) 

FN,(u) " CN(1 ' u)P"luN'1ü(^ + aN)(p + r) - (h + p)](N + p)u 

- (X + aN)(p + r)N} for all N > 1 . 

From (2.26), the sign of  F'' (u) or equivalently the sign of F''(T) N N 

depends only on that of  the  terms within the curly brackets,   since 

(1 - u) 
P-1 N-1 

N  * 
are all positive for    u t   [0,1)   .    The  sign of  the 

terms within curly brackets  in (2.26),  depends on the values of  the 

parameters and there are only two possible cases: 
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(1) 

(X + aN)(p + r)   >   (h + p)   . 

(True  in practical cases.)     In this case,  the terms within the curly 

brackets  can have at most one  change in sign as  they are  linear in    u 

Hence,     F'^T)    can have at most one change in sign in the range 

T  t   [0,-)   . 

(ii) 

(X + ctN)(p + r)   <   (h + p)   . 

In this case, F'1(u) < 0 for all u e (0,1) => F''(T) < 0 for all 
N N 

T e (0,^) . Hence, F'/CT)  does not have any change in sign in the 

range T e [0,^) and for all N > 1 . 

Proposition 2.7 is proved for all N > 1 . For the case when N = 0 , 

from (2.22), 

(2.27)       F^(T) = [X(p + r) - (h + p)]XPo(T) 

This  implies    F''(T)     is either positive or nonpositive depending upon 

whether    X (p + r)  -   (h + p)   > 0    or    X (p + r)  -  (h + p)   <  0    respectively. 

Hence,     F''(T)    cannot have any change in sign. o 

There  are three important corollaries which follow from Proposition 2.7 

which ultimately prove that    y   (T)     is a nondecreasing  function of    T  . 

Corollary  1: 

(a)  For values of N > 1 , F.,(T) is either strictly concave throughout 

or initially strictly concave and then remains strictly convex in 

T in the range [0,00) . 
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(b) F (T)  is either strictly concave throughout or strictly convex 
o 

throughout in T e [0,<") . 

Proof; 

Again consider the two cases relative to the magnitude of the 

parameters. 

(i) 

(X + aN) (p + r) > (h + p) . 

By (2.27),     F'^T)   > 0 .    Hence,    F  (T)     is strictly convex in    T  .     By 
o o 

Proposition 2.7,    F'' (T)    can have at mosr. one change in sign for all 

N > 1  .    From  (2.26), note that    F'' (T)     is initially negative.     Hence, 

F„(T)    is either strictly concave throughout or strictly concave at 

first and then strictly convex throughout as    T    ranges    [0,°°)   . 

(ii) 

(X + aN)(p + r)  <  (h + p)   . 

By (2.27),  F'^T) < 0 .  By (2.26),  F^'(T) < 0 .  Hence,  FN(T)  is 

strictly concave in T e [0,«) for N - 0,1,2, ... . 

Corollary 2; 

For all values of N e (0,1,2, ...} , FN(T) crosses the 

"p + r - c line" at most once and from above. 

Proof; 

Since FN(0) = p + r for all N - 0,1,2, ... , FN(T)  starts from above 

the "(p + r - c)  line." Also, F^vO) « h for all N - 1,2, ...  and 

f'(oo) m  _p for finite N > 0 . Hence, from Proposition 2.7 and Corollary 1, 



it   is  clear   Lliai  once    F'(T)     becomes nogativc,   it  stays negative thereafter. 

Hence,   Corollary  2  is  true.     For   those    N    which are  greater  than some 

bounded  integer,     F  (T)     increases  continuously and  hence will never cross 

the     "p -f   r  -  c    line." 

Corolla^v   3: 

The solutions T ,T , ..., T_   (where N  is the limiting value of 
N-l 

y (T))  obtained by equating  F.,(T) = p + r - c  for  N = 0,1,2, ..., (N-l) 
O N 

respectively   ire unique  and   are   strictly increasing. 

Proof: 

Using   (2.18)  and Corollary  2  and the  fact  that     N    is  the  limiting value 

of     y   (T)   ,   it  is  immediate   that     FV,(T)    crosses   the     "(p + r - c)     line" 
o N 

only once   for    N ~  0,1,2,   ...,   (N-l)   .    Hence,   the  solutions 

Tn,T   ,   ...,  T ar? unique.     By  Proposition 2.5,   it   is  immediate  that 
N-l 

T     <  T    < T 
0 1 2 

N-l 

Example: 

Figure  2.5  illustrates  the   shape of    F  (T)     with respect  to    T  e   [0,°°)   , 

for   the  case when     (A  + ctN) (p + r)   >   (h + p)   ,   for values of 

N -  0,1,2,   ....  6  . 

Proposition 2.8: 

The  critical  order  level  is  a  nondecreasing  step   function of  the  review 

period,   continuous  from  the  right with  finite  saltus  at  points 

f)     I '   * ■ ' ' 
N-l 

Proof 

From Corollary  2 and  Proposition 2.5,   it  follows  for  a given    T =  T   , 
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(p+r) 

Graph of F^ Vs T when 

(X + aN)(p + r) > (h + p) 

FIGURE 2.5 



5'. 

« • 
that if ttu« critical urder level U y (T) , then for «li T > T , 

condition (2.1H) cui uitly be »ntUfied by an N w y (T) . Hunt«*, 

y (T) > y (T) (or all T > T . The reitt of the proposition follow« fro» 

Corollary 3 and Equation (2.IB). Thus, 

y0(T) - 0 

y0(T) - 1 

for 0 < T < T, 

for T0 < T < Tj 

y (T) ■ N - 1 for T   < T < T 
o — . ■    — 

y0(T) - S 

N-2 

for T > T 

N-l 

N-l 

Example; 

Figure (2.6) illustrates the plot of y (T) against T for the 

example given in Figure 2.5. 

y0(T) 

-fc-T 

FIGURE 2.6 
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CHAPTER 3 

81NCLF. PERIOD HODEL FOR SEASONAL OR STYLE GOODS 

3.0 Introduction 

A« dUcusiicd In Section 1.11, for the case of seaiional or itylc goodi, 

either a  fixed period-length policy or en optimal period-length policy 

may be followed.  In the former caae, an optimal order policy la sought by 

fixing the review period inatltutionally, while in the latter case an 

optimal order policy as well as an optimal review period are sought which 

leads to an optimization problem with two variables. The optimization is 

carried out in two stages by first finding the optimal ordering policy as a 

function of the length of the review period and then selecting an optimal 

review period. Thus, an optimal solution for both fixed and optimal period- 

length policies are given. Only a single period problem is solved for 

seasonal goods since In general the season is not longer than a year. 

Here again two situations may arise from demands which occur when the 

inventory Is zero: 

(I) The demand is not filled, i.e., it is lost. The cost of losing 

these demands may be estimated by the stock-up cost parameters 

p(> 0) and p(> 0) as explained in Section 1.15.  If the cost 

of "lost sales" Is ignored, then both p and p will be zero. 

(II) The demand is back ordered and supplied at the end of the season. 

In general, 1c is not practical to follow this policy for 

seasonal goods. 

3.1 Optimal Order Level for a Given Review Period 

Confining the analysis to the case when "lost sales" policy is followed, 

it is Immediate that all the results of Chapter 2 hold by making the initial 
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ordfr level    (x)    rero.    Thu* tlio critical order Ivvel    y (T)    Mtlifies, 

AC(y0(T) - l.T) < 0 

AC(y0(T),T)  > 0 

where AC(y,T) Is given by (2.7). The optimum order level y (T) Is, 

y'u 

yo(T)  If k + C(y0(T),T) < C(0,T) 

otherwise. 

Since a single period problem is solved for seasonal goods, y (T) equals 

zero implies no business is done. Hence, to be in business, a positive 

Inventory level must be maintained at the beginning, tor this to be true, 

the condition k + G(y (T),T) < G(0,T) must be satisfied. Proposition 3.7 

(refer to Section 3.5) proves that there exists a lower bound 

T (> T0 and finite) on the review period T , above which y (T)  is 

y (T) (> 1) . Thus, only those values of T which are greater than T 

will be considered for finding an optimal review period. 

3.2 Order Level Optimized Net Revenue Function 

The order level optimized net revenue function is defined to be (see 

(2.4)) 

(3.1) 
ir(T) £ Tr(yo(T),T) 

rm(T) - k - G(yo(T),T)      for all T e [TQ,«) 

and (see (2.5)) 
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C(y (T),T) - cy (T) ♦ (p ♦ r)   J    (n - yA(T))FB(T) 

o 

y0(T)        l.di ♦l,o) 

o.2) ♦;  i   (ye(T). n,-a... 
o-o  "     0 * n 

I (n + 1,D) 

♦ 5   I    [n - yo(T)) -f—- 0 n.yo(T)+l     
0     ^ + n 

From (3.1) and (3.2), it is observed chat Che order level optimized net 

revenue is a function of the review period alone. Hence, an optimal review 

period can be sought by maximizing *(T) with respect to T . Recall the 

fact (Proposition 2.8) that y (T)  is a step function of T , having Jumps 

at points T-.T., ..,, T   where at time T , y (T) Jumps from a value 
ü 1      N-l _ 

N to a vlue N -f 1 , being continuous from the right and N is the 

limiting value of y (T) . 

Since the expressions for *(T) involves y (T) , it will be 

interesting to see whether TT(T) has also Jumps at T-.T., ..., T   . It 
U i      N-l 

turns out Chat *(T) is continuous for all values of T . 

Proposition 3.1; 

The order level optimized net revenue function Is a continuous function 

of the review period. 

Proof; 

From Proposition 2.8,  it follows that    y (T)     is constant during the 

intervals    [TQ.T^MT^T^ jT^    ,T_    \ J^    ,»\  .    Denote by    ^(T)   , 

the value of the function    IT(T)    during the  interval    [Tv  . ,T..)    where    y  (T) 
N-l  N 0 

is equal to N .  With the notation T ■ » , N varies from 1,2, ..., N . 
N 

Hence, 
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0.3) 

where 

»„(T) • r«(T) - k - C(N,T)     for «11 T^j < T < Tj, 

and N • 1,2, ..., R 

C(N,T) - cN + <p + r) I      (n - N)Pn(T) 

(3.4) 

n-N+1      n 

H       I_(n + l,p) m      m I (n + l,o) 

0 n-0        0 + n     0 n-N+1        p + n 

IC Is clear from (3.3) and (3.4) that "«(T) is continuous in the interval 

T„ . < T < TN for all M ■ 1,2, ,.., N . The only thing remains is to show 

that the jump at point T,. is zero. Denote 

^w ■ wv - w • 
By (3.3), the Jump at    T • TN ,  is 

^V  " -GN+1(TN) + W 

-LW • 
In Section 2.13 (Corollary 3),  it was shown that    T      satisfies    AGN(T ) ■ 0 

Hence, 

AirN(V  - 0 for a11    N ' l*2'   '"'   (N"1)   ' 

3.3    Limiting Values of    Tr(T) 

The next question would be  to examine  the  limiting values of    IT(T)    as 

T    tends to zero and  infinity. 
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(1) T •> 0 j 

Wh#n the r*vi«w period tends to zero, y (T) • 0 by (2.13). Now, 

f un(l - u)0"ldu 

I_(n + l.p) - 5  

I u (1 - u)  du 

where 

.   -oT 
q - 1 - e 

As T-*0,q*0. Hence, ^(n + l,p) * 0 . Also, m(T) ■* 0 and 
q 

P (T) * 0 for all n > 1 . Hence, from (3.1), 
n ■ 

llm TT(T) - 0 . 

(11) T -»- » : 

Now, as    T ■»• • , y (T)  ■* N    which is the finite upper bound for    y  (T) 

Also, as    T "♦■ " , q •♦ 1 .    Hence, 

^(n + l,p) ■* 1 . 
i 

Also, P (T) -► 0 for all n > 0 and m(T) ■* <*>  . Now, 
n • 

11a TT(T) - lim [nn(T) - k - G(yo(T),T)] . 

From (3.2), 
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C(y (T),T) - cy0<T) + (p + r)    I (n - y (T)JP 
n-y ?T)+l 

(T) 

V 

. yoJT) l.in + l,p) 

■■u 

i   • l-(n + l,p) 
♦!   I [n - y0(T)l *   n 

0 n-yo<T)+l     
0      P + n 

Changing the order of sunmation of the terms containing (p + r) , we 

get. 

G(yo(T)fT) - cyo(T) + (p + r) I    [n - yo(T)]Pn(T) 

y0(T) 

- (p + r)  I      [n - yrt(T)]P (T) 
n       on n-0 

. yoJT) I.(n + 1,P) 

n»0 

I-(n + l,p) 

a -    L., ^ - VT)i-Vr^ n-yo(T)+l 

Using the fact that  T P^CT) - 1 and l    n?(T)  » m(T) , we get, »» n Ä  n n-0 n-0 

G(yo(T),T) - cyo(T) + (p + r)[m(T) - yo(T)] 

yo(T) 

+ (P + r)  I  [yo(T) - n]Pn(T) 
n-0 

(3-5> . ^o"' I-(n + 1,0) 

n»0 

" I_(n + l,p) 
+ 2  y   [n . y (T)] -a—_  

0 n-y (T)+l     
0     p + n 

o 



Fro« (3.5), as   T ■♦ ••  , 

cy0(T) ♦ cN 

(p + r)lm(T) - ye(T)l  - - 
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y0(T) I (n + l.o) 

5 Jo ly-<T) ■"' ^ p + n 
k   N 

-   I    IN 1  o ♦ n 
< » 

and positive 

1  (n + l,p) 
2. 
a L. ln-yo(T>1-VTT—^ I  ^-^rh 

n-yo(T)+l n-N+1 

Hence, 11m G(y (T),T)1 - • . Thus, lim ^(T) - » - » which is an 

indeterminate form. L'Hospital's Rule may be used to find the limit. Since 

the limiting value of IT(T) is not in the standard form »/« or 0/0 for 

direct application of L'Hospital's Rule, transform the expression in such a 

way so as to get <*>/<*>    form. 

Multiply the expression (3.1) throughout by p - e   to obtain 

ir(T) - 3 [rpq - pk - pG(yo(T),T)] 
p 

This expression can be rewritten, using (3.5), as 

IT(T) - 3 \-ppq - kp 
P 

+ P 

- P 

y0(T) 

(p + r - c)y  (T)  -  (p + r)      I      [y  (T)  - 

y (T) 

n-0 

I  (n + l,p) 

n]Pn(T) 

-      I      Ly  (T) - n]    3    T 
a    n-0        0 P + n 
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where 

(I) 
I_(n + l,p) 

[n- y (T)] ! I 
n=y (T)+l 

0 

0 P + n 

(I) 

.E. 2 

1/p 

c)y (T) - (p + r) 
0 

y (T) 
0 

I 
n-=0 

I_(n + l,p)] 

[yo(T) - n] P + n 

I (n + l,p) 

[ n - yo (T)] __.p_+_n __ 
a n=y (T)+l 

0 
Q4 • - --~------------

1/p 

I (n + l,p) 

As T -+ "' : y (T) -+ N 
0 P + n 

1 
-+ -- ; Ql -+ -IJP • Q -+ 0 

p + n ' 2 

and Q
4

-+ ... ;... • So apply L'Hospital's Rule for Q
4 

• Hence, 

-~ ~ [n -[ 
... 

n J (l ,"t"l 
lim 0 

T-+"' a/p 

Changing the order of summation, 

A 

+ PY (T) - P 
0 

y (T} 
0 

I 
n=O 

a/p 

o n y (T)]P (T)] 

- n]Pn(T)] 
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• -   - . ^(T) d a    "a p   I    ly0(T) 
n-0 

n]rm  - pyft(T) n     o 

• -pp/o . 

Hence, the numerator of n(T) , which Is nothing but (Q. ^ Q? ^ Qi ^ %) 

tends to a constant, -(p 4- p/a)p , while the denominator p tends to tero. 

Hence, 11m *(!) • -» , 

3.^ Derivative of it(T) 

In expressions (3.1) and (3.2), *(T) involves the step function y (T) 

which does not have left-hand derivatives at points Tn,T., ..., T 
ü l N-l 

Hence, fixing the value of y (?) • N where it is constant for all 

T„ . ^ T < TN , its derivative may be examined with respect to 

T c ITN_1,TN) . From (3.3) and (3.4), 

irN(T) - rm(T) - k 

- cN - (p + r) I      (n - N)P(T) 
n-N+1       n 

N        I_(n + l.p)  . m IJn + l,o) 

-5 I (N-n)-Vrs !   I   (n-N)-VTi;— 0 n-0        p + n     0 n-N+1        p + n 

for all T„ . < T < 1„ and for all N - 1,2, ..., N . 

(Note: T -■♦-».) 
N 

n'(T) IrtV™ 

Using (2.1) and (2.19), 
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<(T) - ^ -   (p + r)      I      (n - N)((p + n - DpaP    . (T)  - XP  (T)) 
" p n-N+1 n"1 n 

N .      - 
- h    I    (N - n)Pn(T) - p      I      (n - N)P (T) 

n-0 n-N+1 n 

change the order of summation for    p    term to obtain, 

n*(T)  - -^ -  (h + i)    I    (N - n)Pw(T) + plN - m(T)l 
K p n-0 n 

(3.6) 
- (p + r)      I      (n - NH.(p + n - l)paPM . (T) - \?m] 

n-N+1 n"i n 

for «11    T^j^ < T < TN    and for «11   N - 1,2,  ..., N  . 

Proposition 3.2; 

For «11    N - 1,2,  ..., N ,  the function   ^»(T)    is continuous in 

T c  ITM jtTu)    an<l ha8 a positive Jump at the bou idary    T      where    y (T) 

changes its value from   N    to    (N + 1)   . 

Proof; 

From (3.6),  it is obvious  that    *»(?)    is continuous in the interior, 

The only thing is to prove the Jump at    T ■ T      is positive. 

Air'(TN)  - Jump of the derivative    ir'(T)    at    T - "L. < » 

" ,rN+l(TN)  " ,rN(TN)   ' 

From (3.6),  the above will be equal to 
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[NH 

J 
N+l N I 

S(V - P -  (h + P) I    ^ (N + 1 ~ n)Pn(TN)  -    ^ (N - n)Pn(TN) 
n-0 

■L (p + r)       J]       (n - N - l)](p + n -  l)^^^)  - XPN(TN)] 
=N+2 

n=N+l 
(n - N)[(p + n -  l)paPn_1(TN)   -  ^(y] 

Expanding the terms under summation and after cancellation, 

&W  " P -   (h + P)    I    Pn(TN) 
na0 

N 
-  (p + r)     I    [(p + n - DiotP^y  - XPn(TN)] 

n»0 

The above expression and (2.20) are identical except for a sign change. 

Hence, Air'(Tj •= -F'T(T„) . From Corollaries 2 and 3, in Chapter 2, 
N N     N  N 

(3.7) F^(T) < 0 for all T > Tv 

since F„(T) crosses the "(p + r - c) line" at T., and continues to N r N 

(strictly) decrease.     Hence,    äTT'(TM)  > 0  . 
N N 

It will be easy to investigate the behavior of ^«(T)  if there are 

finite limits in the summation. Hence, by changing the infinite limits in 

the terms corresponding to "(p + r)" and "p"  in expression (3.6) to 

finite limits, (3.6) can be rewritten as. 

Xr 
TT^T) - ^ - (h + p) I    [N - n]Pn(T) + p[N - m(T)] 

n=0 

+ Up + r) (4 - f nPn(T)) - N(l - f Pn(T)) 
\p  n-0  n  /   V   n=0    / 

- o(p + r)p I        (n - N)[pPn_1(T) + (n - DP^^T)] 
n-N+1 

Ler 
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L(T)  = -cx(p + rd     I       (n - N)!??^^!) +  (n - DP^CT)] 
Ln=N+l J 

- a(p + r); N(P - P    I    P^CT)) + N(m(T)  -    f     (n - DP^^T)] 

- a(p + v)v\     I      jpKn - l)Pn-1(T) + P^i^)] 

+  [(n - I)2 + (n - DIP^CT)] 

Once again changing the infinite limits in the summation  to finite limits 

and using the fact that 

I    n2Pn(T) - V(T) +  MT)]2 - p2%+ P^   . 
n-0       a P 

we have 

( N 

L(T)  «■ a(p + r)p    N[p + m(T)] - N    I    (p + n - DP^j^d) 
I n-1 

N N 
- p m(T) + p/p - P    I    nPn-1(T) -    I    n(n - DP^^T) 

i.e., 

( N 

L(T)  - -a(p + r)p    -Nip + m(T)] +    I    [N - n] (p + n - DP^.j^CT) 
( n-1 

P L      ä     P pJ) 

Hence, 



Xr 
N 

"N(T)        -   '   (h + p)    I    [N - n]Pn(T)  + p[N - m(T)] 
n=0 

+ A(p + r) 
N "I 

m(T) - N +    I     (N - n)Pn(T) 
n=0 J 

bi-i 
- (»(p + r)p    I    (N - n)(p + n -  1)P 

+ a(p + r)^ + pNq - -^ /p + Ml 

„-im] 

The above reduces finally to 
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-Xi 
N 

(3.8) 

irMT)  - ^£+ p[N - m(T)]  -  (h + p)     I    [N - n]P  (T) 
N i n-0 n 

N 
-  (p + r)    I    [N - n][(p + n -  DiaP^^T)  - XPn(T)] 

n-0 

for all    TM  ,   < T < TM    and for all    N - 1,2,  ..., N N-l ^ N 

Now, a general expression for    Tt'(T)    may be written by replacing    N    by 

y0(T)  . 

y0(T) 

^.(T)  . Zi£ + p[y (T)  . m(T)]   -  (h + p)      I      [yn(T)  - n]P   (T) 
n-0 

(3.9) 
y0(T) 

-  (P + r)      I      [y  (T)  - n][(p + n - DpaP^^T)  - XPn(T)] 
n-0 

for all    T 
^o^-1"T' Tyo(T) 

3.5 Properties of TT(T) 

To find the best review period which maximizes Tr(T) , it is necessary 

to know the behavior of IT(T) as T increases in the range [TQ.-O . This, 
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In turn,  leads to  the   Investigation of    IT'CT)   .     Since,  the derivative  is 

defined only in the  intervals where    y  (T)     is constant, each of the  intervals 

is investigated separately.    Note that there are only a finite number of 

intervals.    As a matter of fact,  there are only    N    intervals since    y  (T) 

is bounded above by    N  . 

For all fixed    y   (T)  ■ N    in the range    T    .   < T < TN ,  expression 

(3.8) may be written as. 

-Xp - pp + S   (T) 
(3.10) ^(T) : 2  

where 

{• 
.      N 

SN(T)  - i  (N + p)p -  (h + p)     I    (N - n)Pn(T) 
n«0 

N 
^(T)  - XPn(T)]j (3,11) -  (p + r)     I    [N - n][(p + n - DiaP 

n-0 

for all    TN_1 < T < TN 

(3.10) and  (3.11)  hold for all   N - 1,2,   ..., N  .    Now investigate    SN(T) 

with respect to    T e  [TM i tTN)   •    0nce again, make use of the  transformation 

u - q - 1 - a"01    and    Pn(T) - cn(l - u)pun    where    cn - ^^ f^   . 

N Since   UL, - 1 - e ,  the problem reduces to examining    S  (u)    with respect 

to    u e  ["vitO   •    Thus,  from (3.10), 

- u)h 

( N , 
+ (1 - u)p -o(p + r)    I    (N - n)(p + n - Dc^u^d - u) 

SN(u) - (1 - u)| p(N + p) 

n-1 

[X(p + r) -   (h + p)]    I    (N - n)c un       . 
n-0 n     )J 
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Consider only the terms within the curly brackets which may be rewritten 

using the   fact    (p + n - l)cn_1  =  ncn    as, 

N 
{   }  = -a(p + r)     I     (N - n)(p + n - Dc^u 

n-1 

+    ^    [N - n]un[a(p + r)n + X(p + r)  -   (h + p)]cn 

n=0 

0 1 
Collecting the coefficients of u ,u , ..., u  separately and simplifying, 

N-1 N-1   n 
{ } - a(p + r) I    nc un + X(p + r) I    c u 

n=0  n n=0 

- N-1 
- (h + p) I     (N - n)c un . 

n=0 

Hence, 

- u) i 

(3.12) 

SN(u) - (1 - u)|p(N + p) + (1 - u)' 

- N-1 
- (h+ p) I     (N - n)c u 

n=Ü . 

N-1 n 

(p + r) I     (an + X)cnu 
n-0 

for all Vl^ u < uv. and for all N ■ 1,2, .... N . 
N 

Fact 1: 

As u -> 1 , SN(u) - 0 .  Hence, S^T) ^0 as T ■> » for all values 

of N-1,2 N. 

Fact 2; 

From (3.7), 

<=> 

F^(T) < 0 

F^(u) < 0 

for all T > T, 

for all u > u 
N 
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Thus, from (2.24), it follows that 

(3.13) 

-u)p[( I     ^   N     n N 
F'(u) - -p + (1 - u)K (h + p) I    cu - (X + oN)(p + r)cNu 
« !      n-0 n " 

< 0 

for all u > u.. and for all N « 0,1,2, ..., N . 
■    N 

Proposition 3.3; 

For all    N - 1,2,   .... 5 , the function    SN(T)    (as defined in  (3.11)) 

(strictly) decreases as    T    increases in the range    tTM_i»TM^   • 

Proof; 

To show S (T)  is strictly decreasing in T e [T^.T^ , it is 

sufficient to show that S^(T) < 0 for all T e lTs.4«V ' e(luivalently> 

S^u) < 0 for all u e [uN_1.uN)  since S^(T) - S^(u)a(l - u) . Now, 

dSN(u) 

4.1 f        N"1       1 N"1    n 1 
+ (1 - u)P^ o(p + r) I   nc mi   + X(p + r) I   nc un 

I n-1  n n-l 

. N-l n J 
- (h + p) I    (N - n)ncnu

n i 
n-l J 

r      N"1 N"1 
- (p + 1)(1 - u)p a(p + r) I    nc un + X(p + r) I    c u 

L      n-l  n n-0 

- (h + p) 
N-l 1 
I    (N - n)c un 

n-0       n J 

Taking (1 - u)  as a common factor and using the fact 

■ (p + n - l)c , , we get after rearranging the terms, 
n n-i 

nc 

kts^ 
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N-l 
S^(u)  - -(N + p)p + (1 - u)pj a(p + r)    £    (p + n - Dc^nu* n-l 

n-l 

- a(p + r) 
N-l 1 
l    ncnnun 

n-l J 

[N-l 
Up + r)    l 

n-l 

n-l (p + n - l)c _.u        - X(p + r) 
N-l ] 

n-l J 

r    . N-i . N-i 
-    (h + p)    l     (N - n)(p + n - l)c    .u""1 -   (h + p)    £    (N 

L n-l n"i n-l 
,    "1 - n)nc u   1 0    J 

r N-I N-I 
-    (p + l)a(p + r)    ^    ncnu   + (p + l)A(p + r)    [    cnun 

n-l n-0 

[.    N-l 
(p + l)(h + p)     l 

n-0 
(N - n)c u n 

concentrating only on the terms within the curly brackets, collect the 

coefficients of    u  ,u  ,   ...,  u and after simplifying, 

Sj(u) - (N + p){(l - u)p 
.  N-l 

(h + p) I    cnu
n 

n=0 

(3.14) 
- [X + a(N - l)](p + r)cN_1 - p 

for all uN_1 < u < u.^ and for all N - 1,2, ..., N 

Since (3.13) is true for all N - 0,1,2, ..., N , it is true in particular 

for N - N - 1 e [0,N] also.  Thus, from (3.13) at N - (N - 1) , 

This process is little bit involved. We suggest writing the coefficients 

u  separately for all n - 0,1,2, ..., N-l and then cancel the terms 
using the fact p - X/a . 
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FN-1(U)  " -P + (1 

[.    N-l 
(h + p)    I    cnun 

n=0 

- [X + a(N - l)](p + r)c N-1U     J  <  0 for all    u > u„ , 
■    N-l 

Thus, 

(3.15) S^(u)   <  0 for all    u > u.,  ,   . 
■    N-l 

In particular, 

s;<u)  <  0 for    u e  [Vl'V 

Since a > 0 and (1 - u) > 0 for all T > T (> 0) , 
■ o 

S^(T) < 0 for all T e [T^.T^ 

and for all N - 1,2, ..., N 

Proposition 3.4; 

For all N - 1,2 (N-l) , the function SN(T) ha* a positive jump N 

at T - T < » . 

Proof; 

It Is sufficient to show S (u) has a positive jump at u - uN < 1 

ASN(UN) " WV " W   ' 

By (3.12), 



>p+l - p(l - uN) + (1 - uN)HTXjo(p + r) 

+ X(p + r) 

N N-l r n        r            n ) nc u., -    )    nc u., 
.n-0 n-0 

N N-l r n        r          n 
I cx^ -    K cnUN .n-0 n=0 

- (h + p) 
N N-l 
I    (N + 1 - n)cnuj -    I    (N - n)cnuj 

n-0 n-0 

Cancelling some of  the terms after expansion. 

AS 
N(V-a-V a-V (X + otNKp + r)^ 

N 
- (h + p) i cnu; 

n-0 
+ P 

By (3.13), 

f -      N 

(l-u)p(h + p)    I    c un - 
L n-0   n 

(X + oN)(p + r)cNu p < 0 

for    u > i^.    and for all    N- 0,1,2,   ...,N. 

Thus, 
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AW > 0 for all    N - 1,2,   ...,   (N-l) 

and    Uj. < 1 . 

Proposition 3.5; 

For N » 1,2, ..., N (finite). 

(i)  '"MC^) can have at most one change in sign in the range 

TM . < T < TM . 
N-l ■     N 

(ii) In particular, if IT^(T) < 0 for some T c [^.ifTw) . then 

ir (T) is strictly concave thereafter up to T    . 
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Proof; 

(i)       From (3.10), 

-Xp - pp + S (T) 
^(T) «  :—5i_ 

By Proposition 3.3,     SN(T)    strictly decreases in the range 

T„ ,  < T < T.,  .     Hence,   once the numerator becomes negative in 
N-l « N 

that interval,   it stays  negative in that interval,   since    p > 0 

and    (-Xp - pp)     is a constant. 

(ii)    Assume    ^(T)  <  0    for    T e  [T^,^) 

^'(T)  - Tr',(u)(l - u)o  , 

since    IT'(T)  = <(u)   .     From (3.10), 

-Xp - pp + SM(u) 

"i<"> — 

Hence, 

[(1 - u)S'(u)  +  (-Xp - pp + S  (u))](l - u)a 
it«' (T) 2 S  

N (1 - u)Z 

for all    TM ,   < T < TM . N-l  ■ N 

By  (3.15),     SM(U)   
<  0    for a11    u i "u.i  •     By assumption 

TT^T)   <   0 

=>  -Xp - pp + SN(u)  < 0  . 

Hence, 
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^•(T)  < 0 for «11    T < T < TM 

=> ^N(T)     Is strictly concave In the range    T < T < TN . 

Corollary 1; 

For   N « 1,2,  ..., N , Tt  (T)    attains Its maximum value for a unique 

T e  n^vTJ   • 

Proof; 

Follows directly from Proposition  (3.5). 

Proposition 3.6; 

The expression    SN(T)    (refer to  (3.11))  is strictly positive for all 

N - 1,2 N    and    T E [T^.T^   . 

Proof; 

From (3.11)  and   (3.12), 

SN(T) - SN(u) 

r „r N-1 

- (1 - u) p(N + p) + (1 - u)P   (p + r) I    (an + A)c un 

L L n-0 n 

T (N - n, V"]] - (h + p) 

for all    u^ < u < uN    and    N - 1,2,   ..., N 

By expanding the terms,  the following identity may be verified 

N-l N-l N-2 
I    (N-n)cuni    I    cnun

+    I    cun
+... 

n-0 n n-0   n n-0    n 

2 1 
.    r n.p n.        o +   i   c„u   +   i    c«u   + c«u    • 

_   A      n n      n 0 n-0 n-0 
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Thug,    SN(u)    may he rewritten using  the above Identity as, 

r. (        N-i 
S (u)  -  (1  - u)  p(N + c) + (1 - u)0   (p 4  r)    I    (an + X)cnun 

L ( n»0 

.    N-l / m 0' 

m-O \n»0 '), 

for    uM .  < u < u,,    and    N * 1,2,   ..., N  . 
N-l    » N 

After  rearranging the  terms, 

SJJCU)   -  (1 - u)  pp +    I    p +   (1 - u)D   ( p +   (1 - M)
U
 |(p + r)(am + X)cmu" 

(3.16) - (H +;, jo./]] 

for all    UJH.I  « u < U
M    

an^    ^ = ^»^»  •••» ^  * 

-aT 
Since    u    -  1 - e for all    n » 0,1,2,   ..., N-l  , and 

D 

Tft < T, < ... < T    (refer to Corollary 3), u. < u. < ... < u   . Hence, 
0   1 N-l U   i        N-l 
using (3.13), for all u„ . < u < uN , 

s-1 -        «r 
(3.17)  I    p -Ml - u)P < 

m 
(p + r)(am + X)c u - (h + p) I    c unl > 0 

n-0 n J 

Using (3.17) and the fact pp > 0 and  (1 - u) > 0 , 

SN(u) > 0 

-> 

SN(T) > 0 

(3.18) 

for all uM . < u < u., 
N-l ■     N 

and N ■ 1,2 N 

for all Tj^ < T < TN 

and N ■ 1,2, ..., N . 

 i_ 
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Proposition 3.7; 

There exists a finite lower bound    Ta  > T      for the review period such 
£   o 

that 

< 
k + G(yo(T),T) - G(0,T)       for T - ^ 

for finite set-up cost k . 

Proof: 

By (2.13),  y (T) - 0 for 0 < T < T 

*> k + G(y (T),T) > G(0,T)      for 0 < T < T  , 

since G(y (T) ,T) = G(0,T) .  Hence,  T i   [0,T ) .  So, consider only 

positive order levels, i.e., y (T) > 1  (=>T > T ) . At T » T • 

G(y  (T),T)  - GCl.T  )  ■ G(0,T )     since    AG(0,T )     is zero.     (Refer  to 

Section 2.13,  Corollary 3.) 
dG(y (T),T) 

Let    G,(yoCl),T) ^  .     From   (3.1), 

(3.19) G'(y  (T),T)  --Si- rr'd) for all    To  <  T  < «  . 
p 

Note: 

In  (3.19), only right-hand derivatives exist at    Tp.,!.,   ...,  T 
N-l 

since    y  (T)     \ms  finite saltus at thetie points and is right continuous, 

SubstiLuclng  the value of    ^'(T)     from   (3.10)  and usiny the   fact 

yo(T) - N    for    T^ < T . TN 

Up + r -•• p/i)  -  S  (T) 
O.20) CiyiVM  - G^N.T)  

o 

for    T, „  ,   < T <•!„    and    N-1,2,   ...,H, 
N-l « N 
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Note: 

T • +» . 
N 

From (2.10), 

G(0,T) - (p + r + p/a)in(T) - ppT 

(3.21)       =>G'(0,T) m  X(p 4 r + p/u) - ppp > 0 

P 

Hence, G(0,T) strictly increases in T .  From (3.20) and (3.21), 

-ppp + S (T) 
GMO.T) - G^N.T) -  2      for all TK, , < T < Tv - N-i B     N 

P 
and N ■ 1,2, ..., N . 

r y 
Using the transformation u ■ 1 - e J  , 

-pp(l - u) + S (u) 
G^O^) - GMN.u) -  r, r—       for all uM . < u < uv 11 - u; N-i =     N 

and N ■ 1,2, ..., N . 

By (3.16) and (3.17), 

SN(u) - po(l - u) > 0 for all < u < u. Vi - -    * 

and N ■ 1,2 N 

=> 

C^O.u) - G'(N,u) - 0 for all < U < IT Vl - "  -N 

and N ■ 1,2, ..., N . 

Hence, 
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(3.22) G'CO.T) - G,(yo(T),T) > 0 for all T c [T ,») 

since y (T) - N for "L, , < T < Tj. and N - 1,2  N .  Since 

G(y (T),T) and G(0,T) have the same value at T ■ T and the rate of 

Increase of G(0,T) is strictly greater than that of G(y (T),T)  (by 

(3.22)), the difference [G(0,T) - G(y (T),T)] strictly Increases in T . 

Once the difference equals the finite set-up cost k at T ■ T. , It will 

continue to increase (strictly) for all T > T (> T ) , thus proving the 

proposition. 

Comment 1: 

A positive inventory level is required to remain in business, i.e., 

y (T) > 1 . Thus, the value of the lower bound on the review period T. is 

necessary since y (T) = 0 for T c [0,T ] . Let N  denote y (T ) . 

Hence, an optimal review period that exceeds T  Is sought so as to get an 

order level at least equal to N (> 1) . 

Note: 

(3.23) y0(T) - Na for T4 < T < TN 

3.6 Algorithm to Compute Optimal Review Period 

It was shown in Section 3.2 that 7i(T) tends to -* as T -► " , So, 

ir(T) reaches its maximum value at some T < <" . Corollary 1 Co 

Proposition 3.5 implies, for N ■ 1,2, ..., N , there exists a unique T 

for every interval I
T
M_I t'^«) where "«(T) attains its maximum in this 

interval. Since the number of intervals are finite, the problem reduces to 

just finding the maximum value of ^«(T) for ea(:^ N ■ ^jt^jj+i» •••» N and 

choosing the best of all the maximums.  (Refer to Comment 1 and (3.23) at 

the end of Section 3.5.) 



SU 

Let TK, denote the point in the interval  (T, , ,T.,) where TM(T) N N-l  N N 

attains its maxlnum value.  Any one of the following three situations may 

arise: 

^    S^W «c 

By Proposition  J.^,     "vC^)    decreases  in this   interval.     Hence,    "L, 

is     Vl   ' 

(ii)       -(T^^   >  0    and     -(TN)   ••  Ü 

Again by Proposition (3.5),  -^(T) "> 0 for all  T c [TN ,,TN) . Hence, 

^.,(1)  strictly increases in this interval and T., ■ Tv. . 
N ' N N 

(ill)     -'.(T     .)    •  0    and     TI'(T)   <  0   . 
N     N—1 N     M 

By Proposition   (3.5)  and  Corollary  1,   there exists a unique    T,    where 

''«(T.,)  " 0  .     Hence,   the maximum value  is attained  at     T.,  . 

A step by step algorithm  to compute  the optimal   review period   is ^iven 

which can be pro^r.ii'.med directly on a digital  ccrputer. 

Algorithm; 

Denote the optimal review period by T and the optimum value of the 

order level optimized net return function by T .  Let N ■ N . 

Initializir>> St^ji'-     (R^fcc to Comment 1 and (3.23) at the end of Section 3.5.) 

Compute  "'(T ) .  If  "'(TJ <  0 , then set  " - ^(1^) , f « T£  and 

go to Stop 2. 

If  ^'(T,,) > 0 , there are two possibilit ievs: 

(Tz)   ^  0  .   W^J  >0  .     Then set     " —(^j   . (1)      ff'(Tj   ■  0  ,   w7TM   \ > 0 .     Then set     - = «/TM  \  , T • T^      and 
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go to Step 2. 

(11)  it'C^) > 0 , n'/TN \ < 0 . Then, seek a T c [T^,^ \ such 

that "'(T) Is zero.  Set n - it(T) , T ■ T and go to Step 2. 

Step 1; 

Compute "iC1«.!) •  If ^N^N-I^ i 0 » 8° to SteP 2' Otherwise, go 

to Step 3. 

Step 2; 

Increase K by one.  If N < N , go to Step 1.  Otherwise, go to 

Step 5. 

Step 3; 

Compute ^«(TM) •  If ^N^N^ * 0 » 8° t0 SteP **•    Otherwise, set 

it - "N(TN) , T - TN and go to Step 2. 

Step A; 

Compute T in the range T . < T < TN such that ^.(T) ■ 0 . 

(Since in this case it'(T., ,) > 0 and n'(T„) < 0 , the bisection 
N  N-l N  N 

procedure described in Chapter 2 may be used to find T .)  Compute ~V(T) 

If "j-CT) < IT , go to Step 2. Otherwise, set if ■ ff
N(T) , T - T and go 

to Step Z. 

Step 5; 

Terminate. The current value of T is the optimal review period and 

it is the maximum value of the prof if function. 

Finiteness of Algorithm 

By Proposition 2.6, the order level is bounded as  i - u  (i.e.,  N is 

finite).  Hence, only a finite number of intervals ^Tf;_i»'rv)  for N 



ranging from    ^c»^o+i»   •••» N    aro to be examined for the maximum value of 

TI(T)   .    Hence,   the algorithm tetmlnatt-s   in a finite number of  stops. 

3.7 Case When "Lost  Sales" Costs arc  Ignored 

In Section 3.0,   It was mentioned  that  the cost of "lost sales" may be 

ignored by making    p    and    p    zero.    This may simplify the cost and revenue 

expressions considerably.     Since    p    and    p    are assumed to be nonnegativo 

throughout  the analysis so far, all the results of optimal order policy and 

optimal review period hold  for ihis case also.    An example given  in 

Figure 3.1  illustrates the graph of    ^(T)    against    T    for    N • 0,1,2 6 

when    p    and    p    are zero and    h    is strictly positive. 

3.8 Treatment of  Back Order Regime 

It was pointed out  in Section 3.0 that one can  follow the policy of 

filling up  the back orders at the  end of period.    Since it is a  single-period 

problem,   the revenue  from filling the  back orders should be  Included  in t\'.'-j 

revenue expression.     This means an additional  revenue equals     (r - c)     tiir^ 

the amount back ordered, neglecting  the set-up cost    k    for reordering. 

Thus,  the  net  return function will be 

T(y.T) - nn(T) -   k6(y - 0)  - G(y,T) 

+ (r - c)      I      (n - y)Pn(T)   . 
n-y+l 

The above expression may be directly obtained from (2.4) by simply replacing 

the parameter "p" by "(p + c - r)." Thus, all the results of optimal 

order policy and its properties, given in Chapter 2, follow identically with 

the replacement of "p" by "(p + c - r)." 

Optimal Rpview Period 

Though the analysis of Chapter 2 went without any hitch, it does not 

i 
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r - c 

r^T 

FIGURE  3.1 
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happen so, for finding an optimal review period. The place where it differs 

is in the limit of the order level optimized revenue function as T -+• » . 

In other words, 

lim TT(T) -  -oo is not true always. 
X-H» 

Referring to Section 3.3, and replacing "p" by "p + c - r" , the 

expression for IT(T) may be written as, 

TT(T) - 7 «^ + Q2 + Q3 + QA) 

P 

where 

Q, " [r - (p + c)]pq - kp 

I y„(T) 
py0(T) - (p + c)  I       [y (T) - n]P (T)] 

n=0 

■pL» Jo 

I_(n + l,p) 

[yo(T) - n] -^- 

+ l.P)"| 

r^   J 
»    [n - yo(T)]I.(n + 1^)70 +  n 

.yo(T)+l 1/P 1 
As T -•■ » , the numerator  [Q. + Q. + Q. + Q ]  tends to  p[r - (p + c)] - pp/a 

(Refer to Section 3.3.) Hence, 

11m TT(T) 

T-H» 

'+« if X[r - (p + c)] - pp > 0 

.-« if X[r - (p + c)] - pp < 0 . 

Thus, there are two cases to examine depending on the values of the 

parameters.  The expression for ^(T) may also be written from (3.10) and 

l^_-i- 
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(3.11), with the substitution p » (p + c - r) . Thus, 

X[r - (p + c)] - pp + SN(T) 
(3.2A)       ^(T) z 2  

where 

t SN(T) = p (N + p)p - (h + p) I     (N - n)Pn(T) 
n=0 

(3.25) 
N 

- (p + c) I    [N - n][(p + n - l)iaP 
n=0 

for all T.T , < T < T., . 
N-l =     N 

(T) - XP (T)] 
n-i      u   j 

Comparing (3.11) and (3.24), it is clear that Propositions 3.3 thru 3.7 

hold for this case too. Also, (3.18) holds, i.e., 

SN(T) > 0      for all T^ < T < TN 

(3.26) 

and N ■ 1,2, ..., N . 

If    X(r -   (p + c)]  - pp < 0  ,  then the results of Section 3.5 hold and 

the algorithm to compute the optimal review period,  as given in Section 3.6, 

may be applied without modification.    On the other hand,  if 

X[r - (p + c)]  - pp > 0 ,  then 

IT',(T)  > 0 for all    T e  [T  ,»)   . 
N 0 

(See (3.24) and (3.26),) Hence, n(T)  increases indefinitely as T increases 

and the optimal review period may be made as  large as possible. This case 

may not happen in a number of systems as "c" nay be a.s  high as "r," if 

the product is bought from a competitor so as to satisfy the customers, and 

the back order cost "p" in general is positive. 
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Since seasonal goods have a finite upper bound for the length of the 

review period (i.e., the. length of the season), even if 

X[r - (p + c)] - pp > 0 , the optimal review period can only be made as 

large as the length of the season. 
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CHAPTER A I 

ESTIMATION OF PARAMETERS 

A.l The Estimation Problem 

As discussed In Chapter 1, the probability distribution of demand Is 

given by 

-oTvn P (T) TJB  + ")  (e-
aVn _ e-

oT) 
nU;  r(p)r(n + 1) ^e  ; U  e  ; 

where P (T) ■ probability of n demands In [0,T] and p ■ X/a  > 0 , 

Once the parameters X  (the constant demand rate) and a (the unit 

contagion rate) are determined, P (T)  Is known for given T , and the 

results of Chapter 2 and 3 may be applied to find optimal order policy and 

review period.  Thus, we are left with estimating the values of a and 

A using the knowledge of the demands in the previous periods. Of course, 

this poses a problem for the first period as there is no prior knowledge. 

This can be overcome if a sample survey is done where the product was 

Introduced In a smaller scale in a sample area. As a matter of fact, the 

practice of conducting a pilot study Is prevelant in many cases.  For 

example, a cereal manufacturer usually introduces the product in a small 

sample area before It Is Introduced nationwide.  Using the same estimation 

procedures described in later sections, a good estimate of the initial 

values of a and X may be obtained. 

A number of estimation procedures are available in literature like 

the method of moments, method of frequencies, maximum likelihood procedure, 

modified chi-square method and so on.  We shall essentially describe two 

methods and exhibit their estimators.  The first method will be the direct 

and simple method of moments which may not be efficient:.  But the second 
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mcthcnl will be the maximum likolihood estimate which we will show for large 

sample size, that it is asymptotically unbiassed, minimum variance and 

efficient estimator of the parameters. 

A.2 Method of Moments 

This Is the eliiobt general method proposed for estimating the values 

of the paraiueteio of a distribution by means of a set of sample values. 

This method consists in equating a convenient number of the sample moments 

to the corresponding moments of the distribution, which are functions of 

the unknown parameters.  By considering as many moments as there are 

parameters to be estimated and solving the resulting equation with respect 

to the parameters, estimates of the latter are obtained.  This method often 

leads to comparatively simple calculations in practice. 

Assume we have M sample areas and random variables  X.jX^, ..., X., 

denote the number of demands in  [0,1]  from the ith sample. X.'s 

are independent, identically distributed and have a contagious distributi'»-.i 

such that 

C4.1) PVim  -  T(ll° + ^u   (c-aT)0  (1 - e-<    tor ail    X - 0.1,2, 

Define; 

N 

i«l Sample Mean * X    = —rr 

N 
I     (X    - X)' 

2      i=l 
Sample Variance  =■  s     *  
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We know (from Chapter 1) that the theoretical moments are given by, 

p (1 - e  ) 
m(T) = expectation ■ —*—-^z  

e 

p (1 — e  J 
V(T) - variance   = —^—T^ÖT— 

e 

Equating the  theoretical and sample moments, 

N 

(4.2) m(T) - ^ X . 

N „ 
I (x, - xr 

i=l 2 
(4.3) V(T) = *-* s     . 

Dividing (4.2) by (4.3) we get, a the estimator of a as. 

-at  X 
e   " ~2 » i•e•» 

s 

I    (X - x)z 

1 ,  I  igl 
« - T l0ge|  N 

I   xi 
i=l 

Substituting a in (4.2), we get the estimator for X as 

. 2 

(4.5) X - 
s2-X 

Thus, a and X are the estimators for a and X and the actual 
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estimaLt'B can be found by  replacing the random variables    X,,X?,   ..., X^ 

by observed values    x-.x«,   ...,  x      in expressions  (A .A) and  (4.5) 

respectively. 

A. 3    The Method of Maximum Likelihood 

From a theoretical point of view this is  the most  important general 

method  of estimation. 

Using the same notations of Section 4.2, we define  the likelihood 

function    L    of  the sample of    n    values from a population of  the discrete 

type by  the relation 

(A.6) L(X X  ;a,X)  - P    (a,X)   ...  P     (a,X)   . 
1 n 

When  the sample values of     X, X      are given,   the  likelihood  function 

L    becomes a function of   the  two variables    a    and     X   .     The method of 

maximum likelihood now consists  in choosing,  as  an  estimate of  the unknown 

pair of values     (c«,X)   ,   the particular value    (a,X)     that maximizes  the 

likelihood function.     Since     log L    attains  its maximum  for  the same value 

of     (a,X)    as    L   ,  we  thus  have  to solve  the likelihood  equation 

(A. 7) 61ogL 
6ct 

(A. 8) 6logL 
6X 

with  respect  to     a    and     >   .     We shall disregard  any  root of  the.form 

a •»  constant and/or    X  =■  constant,   thus  counting  a.s  a  solution only a 

root which effectively  depends  on the sample values    X,,   ...,  X     .     Any 
In 

For a detailed discussion the reader is referred to Cramer [2]. 



1111 fWUl ————.- —  .'_ i..i'-i 

91 

solution of the likelihood equation will then be called a maximum likelihood 

estimate of  (a,X) . 

The importance of the method is clear by the following two propositions: 

(i)  If a pair of Joint efficient estimates a  and X  exists, the 

* 
likelihood equations will have the unique solution a - a 

and X ■ X . 

(li) Any solution of (4.7) and (4.8) is a sufficient estimate of 

(a,X)  if a sufficient estimate exists.  From (4.6), 

log L - I    log P  (T) , 
e   i-1     xi 

and from (4.1) 

log Px (T) - log r(p + xi) - XT + x1 log (1 - e"aT) 

- log r(p) - log r(xi + 1) . 

Thus, 

-aT, 
log L - I    log r(p + x ) - nXT + nx log (1 - e "") 

6   i«l 

Define 

- n log r(p) - I    log r(x + 1) 
i-1 

(4.10) *(y) 
A d log r(v) A r'Cy) 

<Ay r(y) 

mam 
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iKy) la known In literature as dlgamma function and tables are available 

In Fletcher, et al (refer Appendix III on Gamma functions). Setting 

6l.0ftL '  0 and using (4.10), we get 

1 n 

(4.11)        ■; I    »KP + x.) - nT - 7 IKP) - 0 . 
0 i-1      i       0 

Similarly, 

- -aT 
iXTe 

o i«l 1 - e    a 

61ogL    \      r  ,/« ,  \ . nXTe    . nX , . .  _ 
-^ ~2    I    *(P + x^ +  — + T -KP) - 0 . 

Using (4.11), this reduces to 

,   - -oT 
A   xe  
a  ,   -aT * 

1 - e 

i.e., 

(4.12) X(eaT - 1) - ox . 

Now we are left with  two simultaneous equations in two unknowns.     Of course, 

a direct approach is  to solve  (4.11)  and  (4.12)  iteratively for a pair 

(o,X)   .    This should not present any problem once it is committed  to a 

digital computer. 

4.4    Efficiency of  the Maximum Likelihood Estimator 

We shall show a few properties about  the contagious distribution given 

in  (4.1) which are necessary to show that  the pair of values     (a,X)     obtained 

from  (4.11)  and   (4.12)   is asymptotically unbiassed, efficient estimate of 

(a,X)    as  the number of samples is  large. 
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fl: 

The first, second and third derivatives of    log P  (T)    with respect 

to    a    and    X   exist. 

Proof; 

The truth of this statement  follows from the fact that Gamma function 

has continuous derivatives of all orders (refer Appendix III). 

P2: 

The contagious distribution    {P (1)} has finite moments of all orders, n 

for given    T . 

Proof: 

For given   T  ,  the generating function of    P   (T)     Is  given by, 

6(2)  - {      K       \      where    i - e"aT  , 
U " qZ/ 

p + q -  1  . 

Differencing this with respect  to    Z  , 

G'CZ) P  qP 

(i - iz)p+1 ' 

The first moment -    I    n P  (T)  - Lt    G'U) 
n-0        n Z^l 

B3. 

P 

Similarly, 



% 

G"(Z) - P(0 ^ ^J* 
(1 -  qZ)P+2 

-2 
and    G"(l)  -    I    n(n - l)Pn(T) - 0^ ^^    .    Thus,  in general, 

n"0 ' p 

n eD 

Gn(l) - Lt   *-£&-.    I    n(n - 1)   ... 2.1»?  (T) 
Z-l   dZn n-0 n 

. BlfiJLJJ   "-   (o + n - l)q 
-n 
P 

Thus,    P  (T)    has finite moments of all orders for    Te [0,°°)   . n 

P3: 

I    r(p + n)P (T) is finite and positive. 
n-0        n 

Proof; 

It is  clear that the summation is positive as    r(p + n)  > 0    for all 

a - 0,1,2,   ...  and    P > 0 .    Finlteness follows from P2. 

The reader can verify himself  that Cramer's conditions  for asymptotic 

efficiency of maximum likelihood estimators follow directly from 

Properties Pi,  P2 and P3.    Thus,  the maximum likelihood estimator     (X,a) 

given by  (4.11)  and  (4.12)   is asymptotically unbiassed efficient estimator. 
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Al'PENDIX  I 

SOLUTION OK OUDINARY DIFFERENTIAL EQUATION 

Reference; 

Grnnvlll.«, W.A.,  P.F.   Smith nnd W.R. LotiRley,  EI.EMKNTS OF THE 
D1FFF.KF.NT1AI, AND TNTEdRAI. CALCULUS,   Olnn .inrl Corapany,  Snn Frnncl.sro,  n.   380, 
(1934). 

Here we give n method  to solvo ordinary differential equations 

of the form 

(i) di+ py" Q 

where P and Q are functions of  x alone or constants. 

To integrate (1), let 

(2) y - uz 

where    z    and    u    are functions of    x    to be determined.     Differentiating  (2), 

dy dz du 
(3) j    - u — + Z'JT • VJ/                                            dx dx dx 

Substituting from  (3) and  (2)  in   (1),  we get 

u ^ + z ^U Puz - Q . 
dx dx 

i.e., 

dz   .  /du 

I 

(A) "SMS^uU-Q 

We now deti'rmine    u    by  Integrating 



—— . ..  . .«4W,. ......^.'^i-..^^^ 

- 
i 

A. 2 

^ + Pu - 0 . 
dx 

in which tlie variables x and u are separable. Using the value of u 

thus obtained, we find z by solving 

dz n 

in which x and z  can be separated. Obviously, the values of u and 

z  thus found will sati.sfy (4), and the solution of (1) is then given by 

(2). 

The differential  Equation  (1.5)  we had   in Chapter 1,   Is given by 

(5) P'U)  - -(X + an)P(t) +  [X + a(n -  l)]Pn  . (t)   . 
n n n—i. 

By putting    y - Pn(t)   , x - t  , P -  (X + an)   , 

Q « X + a(n -  1)   , 

we will have the  same  form as  in  (1).    Hence,  we use the method described 

just now to  solve  for    P   (t)   . n 
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APPENDIX II 

PROPERTIES OF BETA FUNCTION 

By definition, a Beta function of two parameters m , n is given 

B(m,n) 
/m-1 

* 
(1 - x)  dx where m > 0 

n > 0 

Also, 

TT/2 

f   Sin
2m~\o)  Co9

2n-1(6)d0 . 

o/  \  o/  \  r(m)r(n) t B(m,n) - B(n,m) = -.ij,^  (   . 
I (m + n; 

An Incomplete Beta function Is defined by. 

B (m 
x •n) - yx (1 - x)  dx where m > 0 

n > 0 . 

The ratio of incomplete Beta function to the (complete) Beta function is 

known as the incomplete Beta function ratio and is denoted by 

(1) 
Bx(ra,n) 

I (m,n) • zrr r- . 
x      B(m,n) 

Note that I.. (m,n) = 1 . Also, 

(2) I (m,n) "1-1   (ra,n) where x + y = 1 . x y 

A proof of this relation can be found in Cramer [2]. 
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A.4 

Tables of Incomplete Beta functions and ratios are available In Pearson 

[11]. 

It can be verified using (1) and (2) when m is an integer, 

that 

m-l 
I (nun) - 1 - (1 - x)n ^l    ("-Mx1"1 . 
X i-0 V 1 ' 

The advantage of this equation is that of computational feasibility. The 

above series is made up of entirely positive terms and hence can be summed 

quite accurately, even for fairly large values of parameters m and n . 

The actual derivation is given in Harter, H.L., NEW TABLES OF INCOMPLETE 
GAMMA FUNCTION, ETC., Aerospace Research Laboratories, U.S. Government 
Printing Office, Washington, D.C.  20A02, (1964). 
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APPKNIHX  TTI, 

THE GAMMA FUNCTION 

Rofcronco; 

Cramer,  H.   [2]. 

The Gamma function    r(p)     is defined  for all real    p >  0    by the 

integral 

(1) r(p)  -     /    xP     e Xdx  . 

The function la continuous and has continuous derivatives of all orders; 

(2) r(r)(p)- / x^ciog x)re-
xdx 

for any p > 0 . When p tends to 0 or to +" , r(p) tends to +» . 

Since the second derivative is always positive, r(p) has one single 

minimum in  (O,00) .  Approximate calculation shows that the minimum is 

situated in the point p ■ 1.A616 , where the function assumes the value 

r(p ) - 0.8856 . 

By a partial integration, we obtain from (1) for any p > 0 

r(p + 1) - pr(p) . 

When p is equal to a positive integer n , a repeated use of the last 

equality gives, since r(l) » 1 , 

r(n + 1) - n ! 



' ■■!.. 

From (1), we further obtain the relation 

/ 

x-i -ax.       r(X) 
x       e      dx ■ "jT" 

a 
0 

where    a > 0   ,  X > 0   .     From  (2), when    r -  1   , 

r'(p) - y x^^log x)e''Xdx . 

A.6 

Define iiM  « J-loRr(P) , r')pj . iii(p)  is called digarana function. Tables 
dp      IQp; 

of digamma functions are available in Fletcher, A. et al, AN INDEX OF 

MATHEMATICAL TABLES I, Sect. 14.4, Addison-Wesley Publishing Co., Inc., 

Reading, Massachusetts, (1962). 
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